Advertisement

Food and Environmental Virology

, Volume 11, Issue 1, pp 96–100 | Cite as

The First Molecular Detection of Aichi Virus 1 in Raw Sewage and Mussels Collected in South Africa

  • Oikwathaile Onosi
  • Nicole S. UpfoldEmail author
  • Michael D. Jukes
  • Garry A. Luke
  • Caroline Knox
Brief Communication
  • 79 Downloads

Abstract

Aichi virus 1 (AiV-1) has a worldwide distribution and is associated with gastroenteritis in humans. In this study, raw sewage and mussel samples were analyzed for the presence of AiV-1 using reverse transcription-PCR (RT-PCR). Amplification and sequencing of the 3CD and VP1 genomic regions followed by phylogenetic analysis using selected genome sequences revealed the presence of AiV-1, genotype B. The results highlight the importance of further screening to evaluate the prevalence and epidemiology of this clinically important virus in South Africa.

Keywords

Aichi virus 1 Kobuvirus Mussels Waste water Picornaviridae 

Notes

Acknowledgements

This work was supported by Medical Research Council (MRC, South Africa) and Research Council (RC, Rhodes University) grants. OO was supported by the Department of Public Health, Ministry of Health and wellness, Botswana. NU was supported by postgraduate fellowships from the National Research Foundation of South Africa and the German Academic Exchange Service (DAAD). The content of this publication is solely the responsibility of the authors and does not necessarily represent official views of the funders.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics Approval

Ethics approval for this work was not required as the study only involved invertebrates.

References

  1. Alcalá, A., Vizzi, E., Rodriguez-Diaz, J., Zambrano, J. L., Betancourt, W., & Liprandi, F. (2010). Molecular detection and characterization of Aichi viruses in sewage polluted waters of Venezuela. Applied and Environmental Microbiology, 76, 4113–4115.Google Scholar
  2. Altan, E., Aiemjoy, K., Phan, T. G., Deng, X., Aragie, S., Tadesse, Z., et al. (2018). Enteric virome of Ethiopian children participating in a clean water intervention trial. PLoS ONE, 13(8), 1–20.Google Scholar
  3. Ambert-Balay, K., Lorrot, M., Bon, F., Giraudon, H., Kaplon, J., Wolfer, M., et al. (2008). Prevalence and genetic diversity of Aichi virus strains in stool samples from community and hospitalized patients. Journal of Clinical Microbiology, 46, 1252–1258.Google Scholar
  4. Chuchaona, W., Khamrin, P., Yodmeeklin, A., Kumthip, K., Saikruang, W., Thongprachum, A., et al. (2017). Detection and characterization of Aichi Virus 1 in pediatric patients with diarrhea in Thailand. Journal Medical Virology, 89, 234–238.Google Scholar
  5. Di Martino, B., Di Profio, F., Ceci, C., Di Felice, E., & Marsilio, F. (2013). Molecular detection of Aichi virus in raw sewage in Italy. Archives of Virology, 158(9), 2001–2005.Google Scholar
  6. Groome, M. J., Zell, E. R., Soloman, F., Nzenze, S., Parashar, U. D., Izu, A., et al. (2016). Temporal association of rotavirus vaccine introduction and reduction in all-cause childhood diarrheal hospitalizations in South Africa. Clinical Infectious Diseases, 62, 188–195.Google Scholar
  7. Kaikkonen, S., Rasanen, S., Ramet, M., & Vesikari, T. (2010). Aichi virus infection in children with acute gastroenteritis in Finland. Epidemiology and Infection, 138, 1167–1171.Google Scholar
  8. Kitajima, M., & Gerba, C. P. (2015). Aichi virus 1: Environmental occurrence and behaviour. Pathogens, 4(2), 256–268.Google Scholar
  9. Kitajima, M., Haramoto, E., Phanuwan, C., & Katayama, H. (2011). Prevalence and genetic diversity of Aichi viruses in wastewater and river water in Japan. Applied and Environmental Microbiology, 77, 2184–2187.Google Scholar
  10. Knox, C. M., Luke, G. A., Dewar, J., de Felipe, P., & Williams, B. J. (2012). Rotaviruses and emerging picornaviruses as aetiological agents of acute gastroenteritis. Southern African Journal of Epidemiology and Infection, 27(4), 141–148.Google Scholar
  11. Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.Google Scholar
  12. Le Guyader, F. S., Le Saux, J. C., Ambert-Balay, K., Krol, J., Serais, O., Parnaudeau, S., et al. (2008). Aichi virus, norovirus, astrovirus, enterovirus, and rotavirus involved in clinical cases from a French oyster-related gastroenteritis outbreak. Journal of Clinical Microbiology, 46, 4011–4017.Google Scholar
  13. Lodder, W. J., Rutjes, S. A., Takumi, K., & Husman, A. MdR. (2013). Aichi virus in sewage and surface water, the Netherlands. Emerging Infectious Diseases, 19, 1222–1230.Google Scholar
  14. Oberste, M. S., Maher, K., Kilpatrick, D. R., & Pallansch, M. A. (1999). Molecular evolution of the human enteroviruses: Correlation of serotype with VP1 sequence and application to picornavirus classification. Journal of Virology, 73(3), 1941–1948.Google Scholar
  15. Odume, O., Muller, W., Arimoro, F., & Palmer, C. G. (2012). The impact of water quality deterioration on macroinvertebrate communities in the Swartkops River, South Africa: A multimetric approach. African Journal of Aquatic Science, 37, 191–200.Google Scholar
  16. Oh, D. Y., Silva, P. A., Hauroeder, B., Diedrich, S., Cardoso, D. D., & Schreier, E. (2006). Molecular characterization of the first Aichi viruses isolated in Europe and in South America. Archives of Virology, 151, 1199–1206.Google Scholar
  17. Ouédraogo, N., Kaplon, J., Bonkoungou, I. J. O., Traoré, A. S., Pothier, P., Barro, N., et al. (2016). Prevalence and genetic diversity of enteric viruses in children with diarrhea in Ouagadougou, Burkina Faso. PLoS ONE, 11(4), e0153652.Google Scholar
  18. Page, N., Groome, M. J., Murray, T., Nadan, S., Netshikweta, R., Keddy, K. H., et al. (2016). Sapovirus prevalence in children less than five years of age hospitalised for diarrhoeal disease in South Africa, 2009–2013. Journal of Clinical Virology, 78, 82–88.Google Scholar
  19. Pham, N. T. K., Trinh, Q. D., Khamrin, P., Nguyen, T. A., Dey, S. K., Phan, T. G., et al. (2008). Sequence analysis of the capsid gene of Aichi viruses detected from Japan, Bangladesh, Thailand, and Vietnam. Journal of Medical Virology, 80(7), 1222–1227.Google Scholar
  20. Pina, S., Puig, M., Lucena, F., Jofre, J., & Girones, R. (1998). Viral pollution in the environment and in Shellfish: Human adenovirus detection by PCR as an index of human viruses. Applied and Environmental Microbiology, 9(9), 3376–3382.Google Scholar
  21. Reuter, G., Boldizsár, A., Papp, G., & Pankovics, P. (2009). Detection of Aichi virus shedding in a child with enteric and extraintestinal symptoms in Hungary. Archives of Virology, 154, 1529–1532.Google Scholar
  22. Reuter, G., Boros, Á, & Pankovics, P. (2011). Kobuviruses—A comprehensive review. Reviews in Medical Virology, 21(1), 32–41.Google Scholar
  23. Revelas, A. (2012). Acute gastroenteritis among children in the developing world. Southern African Journal of Epidemiology and Infection, 27(4), 156–162.Google Scholar
  24. Saikruang, W., Khamrin, P., Suantai, B., Ushijima, H., & Maneekarn, N. (2014). Molecular characterization of Aichivirus A in adult patients with diarrhea in Thailand. Journal of Medical Virology, 86, 983–987.Google Scholar
  25. Schoub, B. D., Nel, J. D., Lecatsas, G., Greeff, A. S., Prozesky, O. W., Hay, I. T., et al. (1976). Letter: Rotavirus as a cause of gastro-enteritis in Black South African infants. South African Medical Journal, 50(29), 1124.Google Scholar
  26. Schoub, B. D., Robins-Browne, R. M., Lecatsas, G., Still, C. S., Miliotis, M., Koornhof, H. J., et al. (1977). Rotavirus and winter gastro-enteritis in White South African infants. South African Medical Journal, 52(25), 998–999.Google Scholar
  27. Sdiri-Loulizi, K., Gharbi-Khélifi, H., de Rougemont, A., Chouchane, S., Sakly, N., Ambert-Balay, K., et al. (2008). Acute infantile gastroenteritis associated with human enteric viruses in Tunisia. Journal of Clinical Microbiology, 46, 1349–1355.Google Scholar
  28. Sdiri-Loulizi, K., Hassine, M., Aouni, Z., Gharbi-Khelifi, H., Sakly, N., Chouchane, S., et al. (2010). First molecular detection of Aichi virus in sewage and shellfish samples in the Monastir region of Tunisia. Archives of Virology, 155, 1509–1513.Google Scholar
  29. Sdiri-Loulizi, K., Hassine, M., Gharbi-Khélifi, H., Sakly, N., Chouchane, S., Guediche, M. N., et al. (2009). Detection and genomic characterization of Aichi viruses in stool samples from children in Monastir, Tunisia. Journal of Clinical Microbiology, 47, 2275–2280.Google Scholar
  30. Smit, T. K., Bos, P., Peenze, I., Jiang, X., Estes, M. K., & Steele, A. D. (1999). Seroepidemiological study of genogroup I and II calicivirus infections in South and southern Africa. Journal of Medical Virology, 59, 227–231.Google Scholar
  31. Smuts, H., & Hardie, D. (2006). Human bocavirus in hospitalized children, South Africa. Emerging Infectious Diseases, 12, 1457–1458.Google Scholar
  32. Steele, A. D., Bos, P., & Gove, E. (1988). Variation in genomic RNA rotavirus electrophoretypes isolated from white and black infants in South Africa. South African Journal of Science, 84, 574–576.Google Scholar
  33. Subramoney, K., Hellferscee, O., Pretorius, M., Tempia, S., McMorrow, M., von Gottberg, A., et al. (2018). Human bocavirus, coronavirus, and polymavirus detected among patients hospitalised with severe acute respiratory illness in South Africa, 2012 to 2013. Health Science Reports, 1e59, 1–7.Google Scholar
  34. Taylor, M. B., Parker, S., Grabow, W. O. K., & Cubitt, W. D. (1996). An epidemiological investigation of Norwalk virus infection in South Africa. Epidemiology, 116(2), 203–206.Google Scholar
  35. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.Google Scholar
  36. Venter, M., Lassauniére, R., Kresfelder, T. L., Westerberg, Y., & Visser, A. (2011). Contribution of common and recently described respiratory viruses to annual hospitalizations in children in South Africa. Journal of Medical Virology, 83, 1458–1468.Google Scholar
  37. Vos, H. J., & Knox, C. M. (2017). The recovery and molecular identification of HAdV-D17 in raw sewage and mussel samples collected in the Eastern Cape province of South Africa. Southern African Journal of Epidemiology and Infection, 1(1), 1–4.Google Scholar
  38. Yamashita, T., Kobayashi, S., Sakae, K., Nakata, S., Chiba, S., Ishihara, Y., et al. (1991). Isolation of cytopathic small round viruses with BS-C-1 cells from patients with gastroenteritis. Journal of Infectious Diseases, 164, 954–957.Google Scholar
  39. Yamashita, T., Sakae, K., Tsuzuki, Y., Ishikawa, N., Takeda, N., Miyamura, T., et al. (1998). Complete nucleotide sequence and genetic organization of Aichi virus, a distinct member of the Picornaviridae associated with acute gastroenteritis in humans. Journal of Virology, 72, 8408–8412.Google Scholar
  40. Yamashita, T., Sugiyama, M., Tsuzuki, H., Sakae, K., Suzuki, Y., & Miyazaki, Y. (2000). Application of a reverse transcription-PCR for identification and differentiation of Aichi virus, a new member of the Picornavirus family associated with gastroenteritis in humans. Journal of Clinical Microbiology, 38, 2955–2961.Google Scholar
  41. Yang, S., Zhang, W., Shen, Q., Yang, Z., Zhu, J., Cui, L., et al. (2009). Aichi virus strains in children with gastroenteritis, China. Emerging Infectious Diseases, 15, 1703–1705.Google Scholar
  42. Yip, C. C., Lo, K. L., Que, T. L., Lee, R. A., Chan, K. H., Yuen, K. Y., et al. (2014). Epidemiology of human parechovirus, Aichi virus and salivirus in fecal samples from hospitalized children with gastroenteritis in Hong Kong. Virology, 11(182), 1–10.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biochemistry and MicrobiologyRhodes UniversityGrahamstownSouth Africa
  2. 2.Centre for Biomolecular Sciences, School of Biology, Biomolecular Sciences BuildingUniversity of St AndrewsSt AndrewsUK

Personalised recommendations