Food and Environmental Virology

, Volume 10, Issue 3, pp 305–315 | Cite as

Evaluation of Bacterial Contamination as an Indicator of Viral Contamination in a Sedimentary Aquifer in Uruguay

  • P. Gamazo
  • M. Victoria
  • J. F. Schijven
  • E. Alvareda
  • L. F. L. Tort
  • J. Ramos
  • L. Burutaran
  • M. Olivera
  • A. Lizasoain
  • G. Sapriza
  • M. Castells
  • R. Colina
Original Paper


In Uruguay, groundwater is frequently used for agricultural activities, as well as for human consumption in urban and rural areas. As in many countries worldwide, drinking water microbiological quality is evaluated only according to bacteriological standards and virological analyses are not mentioned in the legislation. In this work, the incidence of human viral (Rotavirus A, Norovirus GII, and human Adenovirus) and bacterial (total and thermotolerant coliform and Pseudomonas aeruginosa) contamination in groundwater in the Salto district, Uruguay, as well as the possible correlation between these groups of microorganisms, was studied. From a total of 134 groundwater samples, 42 (32.1%) were positive for Rotavirus, only 1 (0.7%) for both Rotavirus and Adenovirus, and 96 (72.6%) samples were positive for bacterial indicators. Results also show that Rotavirus presence was not associated with changes in chemical composition of the aquifer water. Bacteriological indicators were not adequate to predict the presence of viruses in individual groundwater samples (well scale), but a deeper spatial–temporal analysis showed that they are promising candidates to assess the viral contamination degree at aquifer scale, since from the number of wells with bacterial contamination the number of wells with viral contamination could be estimated.


Groundwater Rotavirus Bacteria Indicator Contamination 



We want to thank the National Research and Innovation Agency ANII (‘‘Agencia Nacional de Investigación e Innovación’’) for the financial support through project FMV_2_2011_1_6927, and Teresita Porochin and Sergio Aguirre for their collaboration during the assembly of the proposal and the early stages of the research. We would also want to thank the Salto’s Local Government (“Intendencia Municipal de Salto”) for allowing the use of their laboratory and to the technicians Marcelo Lucas and Ana María Escanda. We would especially like to thank all the well owners that collaborated with the project by allowing for sample collection. We also thank Prof. Dr. Majid Hassanizadeh from Utrecht University and Prof. Dr. Jan Willem Foppen from UNESCO-IHE for their selfless support and guidance during the first stages of this research.


  1. Abbaszadegan, M., Stewart, P., & LeChevallier, M. (1999). A strategy for detection of viruses in groundwater by PCR. Applied and Environmental Microbiology, 65(2), 444–449.PubMedPubMedCentralGoogle Scholar
  2. Allard, A., Albinsson, B., & Wadell, G. (2001). Rapid typing of human adenoviruses by a general PCR combined with restriction endonuclease analysis. Journal of Clinical Microbiology, 39(2), 498–505.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Andrade, J. D., Rocha, M. S., Carvalho-Costa, F. A., Fioretti, J. M., Xavier, M. D., Nunes, Z. M., et al. (2014). Noroviruses associated with outbreaks of acute gastroenteritis in the State of Rio Grande do Sul, Brazil, 2004-2011. Journal of Clinical Virology, S1386–6532(14), 00324-2.Google Scholar
  4. APHA. (1992). American Public Health Association, Standard Methods for the Examination of Water and Wastewater (18th ed.). Washington, DC.Google Scholar
  5. Armanious, A., Aeppli, M., Jacak, R., Refardt, D., Sigstam, T., Kohn, T., et al. (2015). Viruses at solid–water interfaces: A systematic assessment of interactions driving adsorption. Environmental Science and Technology, 50(2), 732–743.PubMedCrossRefGoogle Scholar
  6. Atmar, R. L., Opekun, A. R., Gilger, M. A., Estes, M. K., Crawford, S. E., Neill, F. H., et al. (2014). Determination of the 50% human infectious dose for Norwalk virus. Journal of Infectious Diseases, 209(7), 1016–1022.PubMedCrossRefGoogle Scholar
  7. Boehm, A. B., & Soller, J. A. (2013). Recreational water risk: pathogens and fecal indicators. Environmental toxicology (pp. 441–459). New York: Springer.CrossRefGoogle Scholar
  8. Bohn, H., McNeal, B. L., & O’Connor, G. (1979). Soil chemistry. New York: Wiley.Google Scholar
  9. Borchardt, M. A., Bertz, P. D., Spencer, S. K., & Battigelli, D. A. (2003). Incidence of Enteric Viruses in Groundwater from Household Wells in Wisconsin. Applied and Environment Microbiology. Scholar
  10. Bosch, A., Pintó, R. M., & Abad, F. X. (2006). Survival and transport of enteric viruses in the environment. In: Viruses in foods (pp. 151–187). New York: Springer.Google Scholar
  11. Bossi, J., & Navarro, R. (1996). Geología del Uruguay, Universidad de la República, Depto. de Publicaciones, ISBN: 978-9974-0-0002-5Google Scholar
  12. Botes, M., de Kwaadsteniet, M., & Cloete, T. E. (2013). Application of quantitative PCR for the detection of microorganisms in water. Analytical and Bioanalytical Chemistry, 405(1), 91–108.PubMedCrossRefGoogle Scholar
  13. Calgua, B., Mengewein, A., Grunert, A., Bofill-Mas, S., Clemente-Casares, P., Hundesa, A., et al. (2008). Development and application of a one-step low cost procedure to concentrate viruses from seawater samples. Journal of Virological Methods, 153(2), 79–83.PubMedCrossRefGoogle Scholar
  14. Cao, H., Tsai, F. T. C., & Rusch, K. A. (2010). Salinity and soluble organic matter on virus sorption in sand and soil columns. Groundwater, 48(1), 42–52.CrossRefGoogle Scholar
  15. Chan, M. C., Sung, J. J., Lam, R. K., Chan, P. K., Lee, N. L., Lai, R. W., et al. (2006). Fecal viral load and NoV-associated gastroenteritis. Emerging Infectious Diseases, 12(8), 1278–1280.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chapman, D. V. (Ed.). (1996). Water quality assessments: A guide to use biota, sediments and water, environmental monitoring (2nd ed.). London: UNESCO, WHO, and UNEP. E & FN Spon.Google Scholar
  17. Cho, H. G., Lee, S. G., Kim, W. H., Lee, J. S., Park, P. H., Cheon, D. S., et al. (2014). Acute gastroenteritis outbreaks associated with ground-waterborne NoV in South Korea during 2008-2012. Epidemiology and Infection, 142(12), 2604–2609.PubMedCrossRefGoogle Scholar
  18. Chrysikopoulos, C. V., & Sim, Y. (1996). One-dimensional virus transport in homogeneous porous media with time-dependent distribution coefficient. Journal of Hydrology, 185, 199–219.CrossRefGoogle Scholar
  19. Churgay, C. A., & Aftab, Z. (2012). Gastroenteritis in children: Part 1 Diagnosis. American Family Physician, 85(11), 1059–1062.PubMedGoogle Scholar
  20. De Giglio, O., Caggiano, G., Bagordo, F., Barbuti, G., Brigida, S., Lugoli, F., et al. (2017). Enteric viruses and fecal bacteria indicators to assess groundwater quality and suitability for irrigation. International Journal of Environmental Research and Public Health, 14(6), 558.PubMedCentralCrossRefGoogle Scholar
  21. Desselberger, U. (1999). RVA infections: Guidelines for treatment and prevention. Drugs, 58(3), 447–452.PubMedCrossRefGoogle Scholar
  22. DINAMA, “Dirección Nacional de Medio Ambiente”. (1996). Manual de procedimientos analíticos para aguas y efluentes. Ministerio de Vivienda, Ordenamiento Territorial y Medio Ambiente). Laboratorio de DINAMA - Edición 1996.Google Scholar
  23. Diston, D., Sinreich, M., Zimmermann, S., Baumgartner, A., & Felleisen, R. (2015). Evaluation of Molecular- and Culture-Dependent MST Markers to Detect Fecal Contamination and Indicate Viral Presence in Good Quality Groundwater. Environmental Science and Technology, 49(12), 7142–7151.PubMedCrossRefGoogle Scholar
  24. Dowd, S. E., Pillai, S. D., Wang, S., & Corapcioglu, M. Y. (1998). Delineating the specific influence of virus isoelectric point and size on virus adsorption and transport through sandy soils. Applied and Environmental Microbiology, 64(2), 405–410.PubMedPubMedCentralGoogle Scholar
  25. Espinosa, A. C., Mazari-Hiriart, M., Espinosa, R., Maruri-Avidal, L., Méndez, E., & Arias, C. F. (2008). Infectivity and genome persistence of RVA and astrovirus in groundwater and surface water. Water Research, 42(10–11), 2618–2628.PubMedCrossRefGoogle Scholar
  26. Estes, M., & Greenberg, H. (2013). RVAes. In D. M. Knipe, P. M. Howley, J. I. Cohen, D. E. Griffin, R. A. Lamb, M. A. Martin, et al. (Eds.), Fields Virology (6th ed.). Philadelphia: Wolters Kluwer Business/Lippincott Williams and Wilkins.Google Scholar
  27. Evers, S., & Lerner, D. N. (1998). How uncertain is our estimate of a wellhead protection zone? Groundwater, 36(1), 49–57.CrossRefGoogle Scholar
  28. Farkas, K., Varsani, A., & Pang, L. (2014). Adsorption of RVA, MS2 bacteriophage and surface-modified silica nanoparticles to hydrophobic matter. Food and Environmental Virology. Scholar
  29. Fawell, J., & Nieuwenhuijsen, M. J. (2003). Contaminants in drinking water. British Medical Bulletin, 68, 199–208.PubMedCrossRefGoogle Scholar
  30. Ferguson, A. S., Layton, A. C., Mailloux, B. J., Culligan, P. J., Williams, D. E., Smartt, A. E., et al. (2012). Comparison of fecal indicators with pathogenic bacteria and RVA in groundwater. Science of the Total Environment. Scholar
  31. Fong, T. T., & Lipp, E. K. (2005). Enteric viruses of human and animals in aquatic environments: Health risks, detection, and potential water quality assessment tools. Microbiology and Molecular Biology Reviews, 69(2), 357–371.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Gerba, C. P., Goyal, S. M., LaBelle, R. L., Cech, I., & Bodgan, G. F. (1979). Failure of indicator bacteria to reflect the occurrence of enteroviruses in marine waters. American Journal of Public Health, 69(11), 1116–1119.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Gerba, C. P., Rose, J., & Haas, C. (1996). Sensitive populations: Who is at the great risk? Food Microbiology, 30, 113–123.CrossRefGoogle Scholar
  34. Gersberg, R. M., Rose, M. A., Robles-Sikisaka, R., & Dhar, A. K. (2006). Quantitative detection of hepatitis A virus and enteroviruses near the United States-Mexico border and correlation with levels of fecal indicator bacteria. Applied and Environmental Microbiology, 72(12), 7438–7444.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Goyal, S. M., & Gerba, C. P. (1979). Comparative adsorption of human enteroviruses, simian rotavirus, and selected bacteriophages to soils. Applied and Environmental Microbiology, 38(2), 241–247.PubMedPubMedCentralGoogle Scholar
  36. Graham, D. Y., Dufour, G. R., & Estes, M. K. (1987). Minimal infective dose of RVA. Archives of Virology, 92, 261–271.PubMedCrossRefGoogle Scholar
  37. Griffin, J. S., Plummer, J. D., & Long, S. C. (2008). Torque teno virus: an improved indicator for viral pathogens in drinking waters. Virology Journal, 5, 112.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Guerrero-Latorre, L., Carratala, A., Rodriguez-Manzano, J., Calgua, B., Hundesa, A., & Girones, R. (2011). Occurrence of water-borne enteric viruses in two settlements based in Eastern Chad: Analysis of hepatitis E virus, hepatitis A virus and human HAdV in water sources. Journal of Water and Health, 9(3), 515–524.PubMedCrossRefGoogle Scholar
  39. Haramoto, E., Yamada, K., & Nishida, K. (2011). Prevalence of protozoa, viruses, coliphages and indicator bacteria in groundwater and river water in the Kathmandu Valley, Nepal. Transactions of the Royal Society of Tropical Medicine and Hygiene, 105(12), 711–716.PubMedCrossRefGoogle Scholar
  40. Hoa Tran, T. N., Trainor, E., Nakagomi, T., Cunliffe, N. A., & Nakagomi, O. (2013). Molecular epidemiology of noroviruses associated with acute sporadic gastroenteritis in children: Global distribution of genogroups, genotypes and GII.4 variants. Journal of Clinical Virology, 56(3), 185–193.PubMedCrossRefGoogle Scholar
  41. Hot, D., Legeay, O., Jacques, J., Gantzer, C., Caudrelier, Y., Guyard, K., et al. (2003). Detection of somatic phages, infectious enteroviruses and enterovirus genomes as indicators of human enteric viral pollution in surface water. Water Research, 37(19), 4703–4710.PubMedCrossRefGoogle Scholar
  42. Hynds, P. H., Thomas, M. K., & Milena Pintar, K. D. (2014). Contamination of groundwater systems in the US and Canada by enteric pathogens, 1990–2013: A review and pooled-analysis. PLoS ONE, 9(5), e93301. Scholar
  43. I.N.E. “Instituto Nacional de Estadística”. (2011). Censos 2011.
  44. Jung, J. H., Yoo, C. H., Koo, E. S., Kim, H. M., Na, Y., Jheong, W. H., et al. (2011). Occurrence of norovirus and other enteric viruses in untreated groundwaters of Korea. J Water Health, 9(3), 544–555.PubMedCrossRefGoogle Scholar
  45. Kageyama, T., Kojima, S., Shinohara, M., Uchida, K., Fukushi, S., Hoshino, F. B., et al. (2003). Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. Journal of Clinical Microbiology, 41(4), 1548–1557.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Lambertini, E., Spencer, S. K., Kieke, B. A., Jr., Loge, F. J., & Borchardt, M. A. (2011). Virus contamination from operation and maintenance events in small drinking water distribution systems. Journal of Water and Health, 9(4), 799–812.PubMedCrossRefGoogle Scholar
  47. Lee, G. C., Jheong, W. H., Jung, G. S., Oh, S. A., Kim, M. J., Rhee, O. J., et al. (2012). Detection and molecular characterization of human noroviruses in Korean groundwater between 2008 and 2010. Food and environmental virology, 4(3), 115–123.PubMedCrossRefGoogle Scholar
  48. Michen, B., & Graule, T. (2010). Isoelectric points of viruses. Journal of Applied Microbiology, 109(2), 388–397.PubMedGoogle Scholar
  49. MSP, “Ministerio de Salud Pública”. (2011). Reglamento Bromatológico Nacional, Decreto N° 315/994 y su modificatorio 375/011- Capítulo 25 Sección I (Agua).Google Scholar
  50. OSE, “Administración de las Obras Sanitarias del Estado”. (2006). Norma Interna De Calidad De Agua Potable, Diciembre, 2006Google Scholar
  51. Pachepsky, Y., Shelton, D. R., McLain, J. E. T., Patel, J., & Mandrell, R. E. (2011). Irrigation waters as a source of pathogenic microorganisms in produce: A review. Advances in Agronomy, 113, 75–141.CrossRefGoogle Scholar
  52. Park, S. H., Kim, E. J., Yun, T. H., Lee, J. H., Kim, C. K., Seo, Y. H., et al. (2010). Human enteric viruses in groundwater. Food and Environmental Virology, 2(2), 69–73.CrossRefGoogle Scholar
  53. Payment, P., & Locas, A. (2011). Pathogens in water: Value and limits of correlation with microbial indicators. Ground Water. Scholar
  54. Payne, D. C., Vinje, J., Szilagyi, P. G., Edwards, K. M., Staat, M. A., Weinberg, G. A., et al. (2013). NoV and medically attended gastroenteritis in US children. New England Journal of Medicine, 368(12), 1121–1130.PubMedCrossRefGoogle Scholar
  55. Qin, M., Dong, X. G., Jing, Y. Y., Wei, X. X., Wang, Z. E., Feng, H. R., et al. (2016). A waterborne gastroenteritis outbreak caused by norovirus GII. 17 in a Hotel, Hebei, China, December 2014. Food and Environmental Virology, 8(3), 180–186.PubMedCrossRefGoogle Scholar
  56. Rajal, V. B., McSwain, B. S., Thompson, D. E., Leutenegger, C. M., Kildare, B. J., & Wuertz, S. (2007). Validation of hollow fiber ultrafiltration and real-time PCR using bacteriophage PP7 as surrogate for the quantification of viruses from water samples. Water Research, 41(7), 1411–1422.PubMedCrossRefGoogle Scholar
  57. Rames, E., Roiko, A., Stratton, H., & Macdonald, J. (2016). Technical aspects of using human HAdV as a viral water quality indicator. Water Research, 96, 308–326.PubMedCrossRefGoogle Scholar
  58. Rodríguez-Lázaro, D., Cook, N., Ruggeri, F. M., Sellwood, J., Nasser, A., Nascimento, M. S. J., et al. (2012). Virus hazards from food, water and other contaminated environments. FEMS Microbiology Reviews, 36(4), 786–814.PubMedCrossRefGoogle Scholar
  59. Rose, M. A., Dhar, A. K., Brooks, H. A., Zecchini, F., & Gersberg, R. M. (2006). Quantitation of hepatitis A virus and enterovirus levels in the lagoon canals and Lido beach of Venice, Italy, using real-time RT-PCR. Water Research, 40(12), 2387–2396.PubMedCrossRefGoogle Scholar
  60. Scandura, J. E., & Sobsey, M. D. (1997). Viral and bacterial contamination of groundwater from on-site sewage treatment systems. Water Science and Technology, 35(11–12), 141–146.CrossRefGoogle Scholar
  61. Schijven, J. F., & Hassanizadeh, S. M. (2000). Removal of viruses by soil passage: Overview of modeling, processes, and parameters. Critical reviews in environmental science and technology, 30(1), 49–127.CrossRefGoogle Scholar
  62. Schijven, J. F., Mülschlegel, J. H. C., Hassanizadeh, S. M., Teunis, P. F. M., & de Roda Husman, A. M. (2006). Determination of protection zones for Dutch groundwater wells against virus contamination-uncertainty and sensitivity analysis. Journal of Water and Health, 4(3), 297–312.PubMedCrossRefGoogle Scholar
  63. Seitz, S. R., Leon, J. S., Schwab, K. J., Lyon, G. M., Dowd, M., McDaniels, M., et al. (2011). NoV infectivity in humans and persistence in water. Applied and Environment Microbiology, 77(19), 6884–6888.CrossRefGoogle Scholar
  64. Sidhu, J. P. S., Toze, S., Hodgers, L., Shackelton, M., Barry, K., Page, D., et al. (2010). Pathogen inactivation during passage of stormwater through a constructed reedbed and aquifer transfer, storage and recovery. Water Science and Technology, 62(5), 1190–1197.PubMedCrossRefGoogle Scholar
  65. Siebenga, J. J., Vennema, H., Zheng, D. P., Vinjé, J., Lee, B. E., Pang, X. L., et al. (2009). Norovirus illness is a global problem: Emergence and spread of norovirus GII.4 variants, 2001-2007. Journal of Infectious Diseases, 200(5), 802–812.PubMedCrossRefGoogle Scholar
  66. Tao, C. W., Hsu, B. M., Kao, P. M., Huang, W. C., Hsu, T. K., Ho, Y. N., et al. (2016). Seasonal difference of human adenoviruses in a subtropical river basin based on 1-year monthly survey. Environmental Science and Pollution Research, 23(3), 2928–2936.PubMedCrossRefGoogle Scholar
  67. Tort, L. F. L., Victoria, M., Lizasoain, A., Castells, M., Maya, L., Gómez, M. M., et al. (2015). Molecular epidemiology of group a rotavirus among children admitted to hospital in Salto, Uruguay, 2011‐2012: First detection of the emerging genotype G12. Journal of Medical Virology, 87(5), 754–763.PubMedCrossRefGoogle Scholar
  68. Victoria, M., Tort, L. F., García, M., Lizasoain, A., Maya, L., Leite, J. P., et al. (2014). Assessment of gastroenteric viruses from wastewater directly discharged into Uruguay River, Uruguay. Food Environ Virol.. Scholar
  69. WHO, World Health Organization. (2011). Guidelines for Drinking-water Quality, (4th ed.)Google Scholar
  70. WHO, World Health Organization. (2014). Preventing diarrhoea through better water, sanitation and hygiene: exposures and impacts in low- and middle-income countries.Google Scholar
  71. Xagoraraki, I., Yin, Z., & Svambayev, Z. (2014). Fate of viruses in water systems. Journal of Environmental Engineering. Scholar
  72. Yates, M. V., Gerba, C. P., & Kelley, L. E. (1985). Virus persistence in groundwater. Applied and Environment Microbiology, 49, 778–781.Google Scholar
  73. Zeng, S. Q., Halkosalo, A., Salminen, M., Szakal, E. D., Puustinen, L., & Vesikari, T. (2008). One-step quantitative RT-PCR for the detection of RVA in acute gastroenteritis. Journal of Virological Methods, 153(2), 238–240.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • P. Gamazo
    • 1
  • M. Victoria
    • 2
  • J. F. Schijven
    • 3
    • 4
  • E. Alvareda
    • 1
  • L. F. L. Tort
    • 2
  • J. Ramos
    • 1
  • L. Burutaran
    • 2
  • M. Olivera
    • 1
  • A. Lizasoain
    • 2
  • G. Sapriza
    • 1
  • M. Castells
    • 2
  • R. Colina
    • 2
  1. 1.Departamento del Agua (Water Department), CENUR LN (North Littoral Regional University Center)Universidad de la RepúblicaSaltoUruguay
  2. 2.Laboratorio de Virología Molecular, (Molecular Virology Laboratory), CENUR LN (North Littoral Regional University Center)Universidad de la RepúblicaSaltoUruguay
  3. 3.Department of Earth SciencesUtrecht UniversityUtrechtThe Netherlands
  4. 4.Department of Statistics, Informatics and ModellingNational Institute of Public Health and the Environment (RIVM)BilthovenThe Netherlands

Personalised recommendations