Advertisement

Cognitive Computation

, Volume 11, Issue 6, pp 855–868 | Cite as

CSA-DE/EDA: a Novel Bio-inspired Algorithm for Function Optimization and Segmentation of Brain MR Images

  • Zhe Li
  • Yong XiaEmail author
  • Hichem Sahli
Article

Abstract

The clonal selection algorithm (CSA), which describes the basic features of an immune response to an antigenic stimulus, has drawn a lot of attention in the biologically inspired computing community, due to its highly adaptive and easy-to-implement nature. Despite many successful applications, CSA still suffers from limited ability to explore the solution space. In this paper, we incorporate the differential evolution (DE) algorithm and the estimation of distribution algorithm (EDA) into CSA, and thus propose a novel bio-inspired algorithm referred to as CSA-DE/EDA. In the proposed algorithm, the hypermutation and receptor editing processes are implemented based on DE and EDA, which provide improved local and global search ability, respectively. We have applied the proposed algorithm to five commonly used benchmark functions for optimization and brain magnetic resonance (MR) image segmentation. Our comparative experimental results show that the proposed CSA-DE/EDA algorithm outperforms several bio-inspired computing techniques. CSA-DE/EDA is a compelling bio-inspired algorithm for optimization tasks.

Keywords

Bio-inspired computing Clonal selection algorithm (CSA) Differential evolution (DE) Estimation of distribution algorithm (EDA) Image segmentation 

Notes

Acknowledgements

We appreciate the efforts devoted by the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC) to collect and share the clinical MR brain data sets and their manual segmentations for comparing interactive and (semi)-automatic segmentation algorithms for MRI of major brain tissues.

Funding

This work was supported in part by the National Natural Science Foundation of China under Grant 61771397, in part by the Science and Technology Innovation Committee of Shenzhen Municipality, China, under Grant JCYJ20180306171334997, in part by the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University (NPU) under Grant ZZ2019029, in part by Synergy Innovation Foundation of the University and Enterprise for Graduate Students in NPU under Grant XQ201911, and in part by the the Project for Graduate Innovation team of NPU.

Compliance with Ethical Standards

Conflict of Interest

We would like to submit a manuscript entitled “CSA-DE/EDA: A Novel Bio-inspired Algorithm for Function Optimization and Segmentation of Brain MR Images” for possible publication in Cognitive Computation. There are no potential conflicts of interest to report.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Molina D, LaTorre A, Herrera F. An insight into bio-inspired and evolutionary algorithms for global optimization: review, analysis, and lessons learnt over a decade of competitions. Cogn Comput. 2018;10(4):517–44.  https://doi.org/10.1007/s12559-018-9554-0.CrossRefGoogle Scholar
  2. 2.
    Siddique N, Adeli H. Nature inspired computing: an overview and some future directions. Cogn Comput. 2015;7(6):706–14.  https://doi.org/10.1007/s12559-015-9370-8.CrossRefGoogle Scholar
  3. 3.
    Srinivas M, Patnaik LM. Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Trans Syst Man Cybern. 1994;24(4):656–67.  https://doi.org/10.1109/21.286385.CrossRefGoogle Scholar
  4. 4.
    Haktanirlar Ulutas B, Kulturel-Konak S. A review of clonal selection algorithm and its applications. Artif Intell Rev. 2011;36(2):117–38.  https://doi.org/10.1007/s10462-011-9206-1.CrossRefGoogle Scholar
  5. 5.
    Binitha S, Sathya SS. A survey of bio inspired optimization algorithms. Int J Soft Comput Eng. 2012;2(2):137–51.Google Scholar
  6. 6.
    Ma X, Li X, Zhang Q, Tang K, Liang Z, Xie W, et al. A survey on cooperative co-evolutionary algorithms. IEEE Trans Evol Comput. 2018;23:421–41.  https://doi.org/10.1109/TEVC.2018.2868770.CrossRefGoogle Scholar
  7. 7.
    Gupta A, Ong Y-S. Back to the roots: multi-X evolutionary computation. Cogn Comput. 2019;11:1–17.  https://doi.org/10.1007/s12559-018-9620-7.CrossRefGoogle Scholar
  8. 8.
    Tang Q, Shen Y, Hu C, Zeng J, Gong W. Swarm intelligence: based cooperation optimization of multi-modal functions. Cogn Comput. 2013;5(1):48–55.  https://doi.org/10.1007/s12559-012-9144-5.CrossRefGoogle Scholar
  9. 9.
    Horn J, Nafpliotis N, Goldberg DE, editors. A niched Pareto genetic algorithm for multiobjective optimization. In Proceedings of the first IEEE conference on evolutionary computation, IEEE World Congress on Computational Intelligence; 1994 Jun. Vol. 1, p. 82–87.Google Scholar
  10. 10.
    Zhang Q, Sun J, Tsang E, Ford J. Hybrid estimation of distribution algorithm for global optimization. Eng Comput. 2004;21(1):91–107.CrossRefGoogle Scholar
  11. 11.
    Wang SY, Wang L. An estimation of distribution algorithm-based memetic algorithm for the distributed assembly permutation flow-shop scheduling problem. IEEE Trans Syst Man Cybern Syst Hum. 2015;46(1):139–49.CrossRefGoogle Scholar
  12. 12.
    Wu CG, Wang L, Zheng XL. An effective estimation of distribution algorithm for solving uniform parallel machine scheduling problem with precedence constraints. IEEE Congress on Evolutionary Computation; 2016 Jul 24. p. 2626–32.Google Scholar
  13. 13.
    Sun JY, Zhang QF, Tsang EPK. DE/EDA: a new evolutionary algorithm for global optimization. Inf Sci. 2005;169(3–4):249–62.  https://doi.org/10.1016/j.ins.2004.06.009.CrossRefGoogle Scholar
  14. 14.
    Price KV. Differential evolution vs. the functions of the 2nd ICEO. In Proceedings of 1997 IEEE International Conference on Evolutionary Computation; 1997 Apr 13. p. 153–157.Google Scholar
  15. 15.
    Tang L, Dong Y, Liu J. Differential evolution with an individual-dependent mechanism. IEEE Trans Evol Comput. 2014;19(4):560–74.CrossRefGoogle Scholar
  16. 16.
    Kim SS, Mcloone S, Byeon JH, Lee S, Liu H. Cognitively inspired artificial bee colony clustering for cognitive wireless sensor networks. Cogn Comput. 2017;9(2):207–24.CrossRefGoogle Scholar
  17. 17.
    Xiaoyang F, Shuqing Z. An improved artificial immune recognition system based on the average scatter matrix trace criterion. Adv Swarm Intell. 2012;14(1):284–90.Google Scholar
  18. 18.
    Vidal JM, Orozco ALS, Villalba LJG. Adaptive artificial immune networks for mitigating DoS flooding attacks. Swarm Evol Comput. 2018;38:94–108.CrossRefGoogle Scholar
  19. 19.
    Zhang X, Zhang E, Li R. Optimized feature extraction by immune clonal selection algorithm. IEEE Congress on Evolutionary Computation; 2012 Jun 10. p. 1–6.Google Scholar
  20. 20.
    Banerjee S, Moses M. Scale invariance of immune system response rates and times: perspectives on immune system architecture and implications for artificial immune systems. Swarm Intell. 2010;4(4):301–18.CrossRefGoogle Scholar
  21. 21.
    LNd C, Zuben FJV. Learning and optimization using the clonal selection principle. IEEE Trans Evol Comput. 2002;6(3):239–51.CrossRefGoogle Scholar
  22. 22.
    Zhang L, Gong M, Jiao L, Yang J.  Optimal approximation of linear systems by an improved clonal selection algorithm. 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence); 2008 Jun 1. p. 527–534.Google Scholar
  23. 23.
    Batista L, Guimaraes FG, Ramirez JA. A distributed clonal selection algorithm for optimization in electromagnetics. IEEE Trans Magn. 2009;45(3):1598–601.  https://doi.org/10.1109/tmag.2009.2012752.CrossRefGoogle Scholar
  24. 24.
    Ulutas BH, Kulturel-Konak S. A review of clonal selection algorithm and its applications. Artif Intell Rev. 2011;36(2):117–38.CrossRefGoogle Scholar
  25. 25.
    Gong M, Jiao L, Zhang L. Baldwinian learning in clonal selection algorithm for optimization. Inf Sci. 2010;180(8):1218–36.CrossRefGoogle Scholar
  26. 26.
    Xu N, Ding Y, Ren L, Hao K. Degeneration recognizing clonal selection algorithm for multimodal optimization. IEEE Trans Cybern. 2018;48(3):848–61.  https://doi.org/10.1109/TCYB.2017.2657797.PubMedCrossRefGoogle Scholar
  27. 27.
    Das S, Mullick SS, Suganthan PN. Recent advances in differential evolution—an updated survey. Swarm Evol Comput. 2016;27:1–30.CrossRefGoogle Scholar
  28. 28.
    Bersini H, Dorigo M, Langerman S, Seront G, Gambardella L. Results of the first international contest on evolutionary optimisation (1st ICEO). In Proceedings of IEEE International Conference on Evolutionary Computation; 1996 May 20. p. 611–615.Google Scholar
  29. 29.
    Efrñn MM, Coello CAC. A comparative study of differential evolution variants for global optimization. Genetic and Evolutionary Computation Conference; 2006. p. 485–92.Google Scholar
  30. 30.
    Li G, Chan TM, Leung KS, Lee KH. An estimation of distribution algorithm for motif discovery. IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence); 2008 Jun 1. p. 2411–8.Google Scholar
  31. 31.
    Chen T, Tang K, Chen G, Yao X. On the analysis of average time complexity of estimation of distribution algorithms. IEEE Congress on Evolutionary Computation; 2007 Sep 25. p. 453–460.Google Scholar
  32. 32.
    Larrañaga P, Lozano JA. Estimation of distribution algorithms: a new tool for evolutionary computation: Springer Science & Business Media; 2001 Oct 31.Google Scholar
  33. 33.
    Campelo F, Guimaraes FG, Igarashi H, Ramirez JA. A clonal selection algorithm for optimization in electromagnetics. IEEE Trans Magn. 2005;41(5):1736–9.  https://doi.org/10.1109/TMAG.2005.846043.CrossRefGoogle Scholar
  34. 34.
    Xie Y, Xia Y, Zhang J, Song Y, Feng D, Fulham M, et al. Knowledge-based collaborative deep learning for benign-malignant lung nodule classification on chest ct. IEEE Trans Med Imaging. 2018;38:991–1004.  https://doi.org/10.1109/TMI.2018.2876510.PubMedCrossRefGoogle Scholar
  35. 35.
    Zhang J, Xie Y, Xia Y, Shen C. Attention residual learning for skin lesion classification. IEEE Trans Med Imaging. 2019 Jan 21.  https://doi.org/10.1109/TMI.2019.2893944.PubMedCrossRefGoogle Scholar
  36. 36.
    Song Y, Tan EL, Jiang X, Cheng JZ, Ni D, Chen S, et al. Accurate cervical cell segmentation from overlapping clumps in pap smear images. IEEE Trans Med Imaging. 2016;36(1):288–300.PubMedCrossRefGoogle Scholar
  37. 37.
    Lei B, Yang P, Wang T, Chen S, Ni D. Relational-regularized discriminative sparse learning for Alzheimer’s disease diagnosis. IEEE Trans Cybern. 2017;47(4):1102–13.PubMedCrossRefGoogle Scholar
  38. 38.
    Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging. 2001;20(1):45–57.  https://doi.org/10.1109/42.906424.PubMedCrossRefGoogle Scholar
  39. 39.
    Li C, Gatenby C, Li W, Gore JC. A robust parametric method for bias field estimation and segmentation of MR images. IEEE Conference on Computer Vision and Pattern Recognition. 2009 Jun 20: 218–223.Google Scholar
  40. 40.
    Besag J. On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society: Series B (Methodological). 1986 Jul; 48(3): 259–279.Google Scholar
  41. 41.
    Zheng C, Hu Y, Wang L, Qin Q. Region-based MRF model with optimized initial regions for image segmentation. International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE); 2011 Jun 24. p. 3354–7.Google Scholar
  42. 42.
    Levinshtein A, Stere A, Kutulakos KN, Fleet DJ, Dickinson SJ, Siddiqi K. TurboPixels: fast superpixels using geometric flows. IEEE Trans Pattern Anal Mach Intell. 2009;31(12):2290–7.  https://doi.org/10.1109/TPAMI.2009.96.PubMedCrossRefGoogle Scholar
  43. 43.
    Modestino JW, Zhang J, editors. A Markov random field model-based approach to image interpretation. Computer Vision and Pattern Recognition; 1989. p. 4–8.Google Scholar
  44. 44.
    Iglesias JE, Liu CY, Thompson PM, Tu Z. Robust brain extraction across datasets and comparison with publicly available methods. IEEE transactions on medical imaging. 2011 Apr 5;30(9):1617–34.PubMedCrossRefGoogle Scholar
  45. 45.
    Bharatha A, Hirose M, Hata N, Warfield SK, Ferrant M, Zou KH, et al. Evaluation of three-dimensional finite element-based deformable registration of pre- and intraoperative prostate imaging. Med Phys. 2001;28(12):2551–60.PubMedCrossRefGoogle Scholar
  46. 46.
    Rohlfing T. Image similarity and tissue overlaps as surrogates for image registration accuracy: widely used but unreliable. IEEE Trans Med Imaging. 2012;31(2):153–63.  https://doi.org/10.1109/TMI.2011.2163944.PubMedCrossRefGoogle Scholar
  47. 47.
    Flandin G, Friston KJ. Statistical parametric mapping (SPM). Scholarpedia. 2008;3(4):6232.CrossRefGoogle Scholar
  48. 48.
    Library FS. in http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/. Accessed Jun 2016.
  49. 49.
    Tohka J, Krestyannikov E, Dinov ID, Graham A, Shattuck DW, Ruotsalainen U, et al. Genetic algorithms for finite mixture model based voxel classification in neuroimaging. IEEE Trans Med Imaging. 2007;26(5):696–711.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Zhang T, Xia Y, Feng DD. A deformable cosegmentation algorithm for brain MR images. 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012 Aug 28. p. 3215–8.Google Scholar
  51. 51.
    Zhang T, Xia Y, Feng DD. Hidden Markov random field model based brain MR image segmentation using clonal selection algorithm and Markov chain Monte Carlo method. Biomed Signal Process Control. 2014;12:10–8.CrossRefGoogle Scholar
  52. 52.
    Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain. New York: Thieme; 1988.Google Scholar
  53. 53.
    Filipek PA, Kennedy DN, Caviness VS. Volumetric analysis of central nervous system neoplasm based on MRI. Pediatr Neurol. 1991;7(5):347–51.PubMedCrossRefGoogle Scholar
  54. 54.
    Van Leemput K, Maes F, Vandermeulen D, Suetens P. A unifying framework for partial volume segmentation of brain MR images. IEEE Trans Med Imaging. 2003;22(1):105–19.PubMedCrossRefGoogle Scholar
  55. 55.
    Bishop CM. Pattern recognition and machine learning. New York: Springer Stat Sci. 2006.Google Scholar
  56. 56.
    Li Z, Xia Y, Ji Z, Zhang Y. Brain voxel classification in magnetic resonance images using niche differential evolution based Bayesian inference of variational mixture of Gaussians. Neurocomputing. 2017;269:47–57.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Computer Science and EngineeringNorthwestern Polytechnical UniversityXi’anChina
  2. 2.Research & Development InstituteNorthwestern Polytechnical University in ShenzhenShenzhenChina
  3. 3.Audio Visual Signal Processing (AVSP), Department of Electronics & Informatics (ETRO)Vrije Universiteit Brussel (VUB), VUB-ETROBrusselsBelgium
  4. 4.Interuniversity Microelectronics CenterLeuvenBelgium

Personalised recommendations