Fuzzy Controller for Laboratory Levitation System: Real-time Experiments Using Programmable Logic Controller

  • Kamil Czerwiński
  • Andrzej Wojtulewicz
  • Maciej ŁawryńczukEmail author


Development of a Fuzzy Proportional Integral Derivative (FPID) controller for a laboratory magnetic levitation process is described. The process is unstable and nonlinear, it is impossible to use a classical PID controller which works correctly. The process is very fast: the sampling period is 1 ms. The FPID controller is implemented using the R04 (the iQ-R family) Programmable Logic Controller (PLC) produced by Mitsubishi Electric.


Fuzzy control magnetic levitation nonlinear control programmable logic controller 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. Bächle, S. Hentzelt, and K. Graichen, “Nonlinear model predictive control of a magnetic levitation system,” Control Engineering Practice, vol. 11, no. 21, pp. 12501258, 2013.Google Scholar
  2. [2]
    C. A. Dragos, S. Preitl, R. E. Precup, and E. M. Petriu, “Points of view on magnetic levitation system laboratory-based control education,” Human - Computer Systems Interaction: Backgrounds and Applications, pp. 261–275, 2012.CrossRefGoogle Scholar
  3. [3]
    M. G. Feemster, Y. Fang, and D. M. Dawson, “Disturbance rejection for a magnetic levitation system,” IEEE/ASME Transactions on Mechatronics, vol. 11, no. 11, pp. 709717, 2006.Google Scholar
  4. [4]
    M. Kamel, A. Kandil, W. A. El-Ganaini, and M. Eissa, “Active vibration control of a nonlinear magnetic levitation system via nonlinear saturation controller (NSC),” Nonlinear Dynamics, vol. 77, pp. 605–619, 2014.Google Scholar
  5. [5]
    B. Z. Kaplan and D. Regev, “Dynamic stabilization of tuned-circuit levitators,” IEEE Transactions on Magnetics, vol. 12, no. 5, pp. 556–559, 1976.CrossRefGoogle Scholar
  6. [6]
    D. W. Kim, H. J. Lee, M. H. Kim, S.-y. Lee, and T.-y. Kim, “Robust sampled-data fuzzy control of nonlinear systems with parametric uncertainties: its application to depth control of autonomous underwater vehicles,” International Journal of Control, Automation, and Systems, vol. 10, no. 6, pp. 1164–1172, 2012.CrossRefGoogle Scholar
  7. [7]
    N. D. Lorenzo, L. Cenci, M. Simi, C. Arcudi, V. Tognoni, A. L. Gaspari, and P. Valdastri, “A magnetic levitation robotic camera for minimally invasive surgery: Useful for NOTES?,” Surgical Endoscopy, vol. 31, pp. 2529–2533, 2017.CrossRefGoogle Scholar
  8. [8]
    M. Ławryńczuk, Computationally Efficient Model Predictive Control Algorithms: A Neural Network Approach, Studies in Systems, Decision and Control, vol. 3, Springer, Heidelberg, 2014.Google Scholar
  9. [9]
    Magnetic Levitation System: User’s manual, Inteco, Kraków, 2014.Google Scholar
  10. [10]
    Q. H. Ngo, N. P. Nguyen, C. N. Nguyen, T. H. Tran, and K.-S. Hong, “Fuzzy sliding model control of container cranes,” International Journal of Control, Automation, and Systems, vol. 13, no. 2, pp. 419–425, 2015.CrossRefGoogle Scholar
  11. [11]
    M. Ono, S. Koga, and H. Ohtsuki, “Japan’s superconducting Maglev train,” IEEE Instrumentation & Measurement Magazine, vol. 5, no. 1, pp. 9–15, 2002.CrossRefGoogle Scholar
  12. [12]
    A. Piłat and A. Turnau, “Time-optimal control supported by PD in real-time,” Proc. of the 15th IFAC Workshop on Control Applications of Optimization, pp. 158–163, 2012.Google Scholar
  13. [13]
    A. Piłat and A. Turnau, “Neural adapted controller learned on-line in real-time,” IFAC Proceedings Volumes, vol. 42, no. 13, pp. 47–52, 2009.CrossRefGoogle Scholar
  14. [14]
    S. K. Pradhan and B. Subudhi, “Nonlinear control of a m,agnetic levitation system using a new input-output feedback linearization,” IFAC Papers On Line, vol. 49, no. 1, pp. 332–336, 2016.CrossRefGoogle Scholar
  15. [15]
    Y. Qin, H. Peng, W. Ruad, J. Wu, and J Gao, “A modeling and control approach to magnetic levitation system based on state-dependent ARX model,” Journal of Process Control, vol. 24, pp. 93112, 2014.CrossRefGoogle Scholar
  16. [16]
    J. de J. Rubio, L. Zhang, E. Lughofer, P. Cruz, A. Alsaedi, and T. Hayat, “Modeling and control with neural networks for a magnetic levitation system,” Neurocomputing, vol. 227, pp. 113–121, 2017.CrossRefGoogle Scholar
  17. [17]
    S. Salehi, M. Shahrokhi, and A. Nejati, “Adaptive nonlinear control of pH neutralization processes using fuzzy ap-proximators,” Control Engineering Practice, vol. 17, pp. 1329–1337, 2009.CrossRefGoogle Scholar
  18. [18]
    H. Shakir and W.-J. Kim, “Time-domain fixed-structure closed-loop model identification of an unstable multivariable maglev nanopositioning system,” International Journal of Control, Automation, and Systems, vol. 9, no. 1, pp. 32–41, 2011.CrossRefGoogle Scholar
  19. [19]
    Y. Su, L. Xu, and E.-D. Goodman, “Greenhouse climate fuzzy adaptive control considering energy saving,” International Journal of Control, Automation, and Systems, vol. 15, no. 4, pp. 1936–1948, 2017.CrossRefGoogle Scholar
  20. [20]
    D. Thapa, C. M. Park, S. C. Park, and G.-N. Wang, “Autogeneration of IEC standard PLC code using t-MPSCG,” International Journal of Control, Automation, and Systems, vol. 7, no. 2, pp. 165–174, 2009.CrossRefGoogle Scholar
  21. [21]
    X. Wu, J. Shen, Y. Li, and K. Y. Lee, “Hierarchical optimization of boilerturbine unit using fuzzy stable model predictive control,” Control Engineering Practice, vol. 30, pp. 112–123, 2014.CrossRefGoogle Scholar
  22. [22]
    Z.-J. Yang, K. Miyazaki, S. Kanae, and K. Wada, “Robust position control of a magnetic levitation system via dynamic surface control technique,” IEEE Transactions on Industrial Electronics, vol. 51, no. 1, pp. 26–34, 2004.CrossRefGoogle Scholar
  23. [23]
    W. Yu, P. C. Francisco, and X. Li, ‘Two-stage neural sliding-mode control of magnetic levitation in minimal invasive surgery,’ Neural Computing and Applications, vol. 20, pp. 1141–1147, 2011.CrossRefGoogle Scholar
  24. [24]
    W. Zheng, Zhang, H.-B. Wang, H.-R. Wang and P.H. Yin, “Stability analysis and dynamic output feedback control for nonlinear T-S fuzzy systems with multiple subsystems and nonrmalized membership functions,” International Journal of Control, Automation, and Systems, vol. 16, no. 6, pp. 2801–2813, 2018.CrossRefGoogle Scholar

Copyright information

© CROS, KIEE and Springer 2019

Authors and Affiliations

  • Kamil Czerwiński
    • 1
  • Andrzej Wojtulewicz
    • 1
  • Maciej Ławryńczuk
    • 1
    Email author
  1. 1.Institute of Control and Computation Engineering, Faculty of Electronics and Information TechnologyWarsaw University of TechnologyWarsawPoland

Personalised recommendations