P+d Plus Sliding Mode Control for Bilateral Teleoperation of a Mobile Robot

  • Lucio R. SalinasEmail author
  • Diego Santiago
  • Emanuel Slawiñski
  • Vicente A. Mut
  • Danilo Chavez
  • Paulo Leica
  • Oscar Camacho
Regular Papers Robot and Applications


This paper proposes a control scheme based on combining a PD-like structure and a sliding mode control (SMC) applied to mobile robot bilateral teleoperation systems, in the face of asymmetric and time-varying delays. The proposal includes on the remote site both a P+d control and an SMC strategy in such a way that the advantages of both methods are exploited. The system stability is analyzed using Lyapunov-Krasovskii functionals and a delaydependent stability criteria is obtained using linear-matrix-inequalities (LMI). Finally, the teleoperation system is evaluated through human-in-the-loop experiments to confirm the theoretical results and test the robustness and stability of the proposed control scheme.


Bilateral teleoperation Lyapunov-Krasovskii mobile robot PD-like control sliding mode control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. B. Sheridan, Telerobotics, Automation, and Human Supervisory Control, MIT Press Cambridge, MA, 1992.Google Scholar
  2. [2]
    M. Ferre, M. Buss, R. Aracil, C. Melchiorri, and C. Balaguer, Advances in Telerobotics, Springuer, 2007.CrossRefGoogle Scholar
  3. [3]
    T. B. Sheridan, “Space teleoperation through time delay: review and prognosis,” IEEE Trans. Robot. Autom., vol. 9, no. 5, pp. 592–606, 1993.CrossRefGoogle Scholar
  4. [4]
    P. F. Hokayem and M. W. Spong, “Bilateral teleoperation: An historical survey,” Automatica, vol. 42, no. 12, pp. 2035–2057, 2006.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    D. A. Lawrence, “Stability and transparency in bilateral teleoperation,” IEEE Trans. Robot. Autom., vol. 9, no. 5, pp. 624–637, 1993.CrossRefGoogle Scholar
  6. [6]
    E. Slawiñski, V. A. Mut, P. Fiorini, and L. R. Salinas, “Quantitative absolute transparency for bilateral teleoperation of mobile robots,” IEEE Trans. Syst., Man, Cybern. A, vol. 42, no. 2, pp. 430–442, March 2012.CrossRefGoogle Scholar
  7. [7]
    J. P. Richard, “Time-delay systems: An overview of some recent advances and open problems,” Automatica, vol. 39, no. 10, pp. 1667–1694, 2003.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Y. Wei, J. Qiu, and S. Fu, “Mode-dependent nonrational output feedback control for continuous-time semimarkovian jump systems with time-varying delay,” Nonlinear Analysis: Hybrid Systems, vol. 16, no. Supplement C, pp. 52–71, 2015.Google Scholar
  9. [9]
    Y. Wei, J. Qiu, and H. R. Karimi, “Fuzzy-affine-modelbased memory filter design of nonlinear systems with time-varying delay,” IEEE Transactions on Fuzzy Systems, vol. PP, no. 99, pp. 1–1, 2017.Google Scholar
  10. [10]
    T. A. Varkonyi, I. J. Rudas, P. Pausits, and T. Haidegger, “Survey on the control of time delay teleoperation systems,” Proc. of the IEEE Int. Conf. on Intell. Engineering Syst., 2014, pp. 89–94.Google Scholar
  11. [11]
    R. J. Anderson and M.W. Spong, “Bilateral control of teleoperators with time delay,” IEEE Trans. Autom. Control, vol. 34, no. 5, pp. 494–501, 1989.MathSciNetCrossRefGoogle Scholar
  12. [12]
    G. Niemeyer and J. Slotline, “Stable adaptive teleoperation,” IEEE J. Ocean. Eng., vol. 16, no. 1, pp. 152–162, 1991.CrossRefGoogle Scholar
  13. [13]
    G. Niemeyer and J. J. E. Slotine, “Telemanipulation with time delays,” Int. J. Robot. Res., vol. 23, no. 9, pp. 873–890, 2004.CrossRefGoogle Scholar
  14. [14]
    J.-H. Ryu, J. Artigas, and C. Preusche, “A passive bilateral control scheme for a teleoperator with time-varying communication delay,” Mechatronics, vol. 20, no. 7, pp. 812–823, 2010.CrossRefGoogle Scholar
  15. [15]
    E. Nuño, R. Ortega, N. Barabanov, and L. Basañez, “A globally stable PD controller for bilateral teleoperators,” IEEE Trans. Robot., vol. 24, no. 3, pp. 753–758, 2008.CrossRefGoogle Scholar
  16. [16]
    C.-C. Hua and X. Liu, “Delay-dependent stability criteria of teleoperation systems with asymmetric time-varying delays,” IEEE Trans. Robot., vol. 26, no. 5, pp. 925–932, 2010.CrossRefGoogle Scholar
  17. [17]
    E. Slawiñski and V. Mut, “Pd-like controllers for delayed bilateral teleoperation of manipulators robots,” Int. J. Robust Nonlin. Control, vol. 25, no. 12, pp. 1801–1815, 2015.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    E. Nuño, L. Basañez, and R. Ortega, “Passivity-based control for bilateral teleoperation: A tutorial,” Automatica, vol. 47, no. 3, pp. 485–495, 2011.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    H. C. Cho, J. H. Park, K. Kim, and J.-O. Park, “Slidingmode-based impedance controller for bilateral teleoperation under varying time-delay,” Proc. of the IEEE Int. Conf. on Robot. and Autom., vol. 1, 2001, pp. 1025–1030.Google Scholar
  20. [20]
    S. Khosravi, A. Arjmandi, and H. D. Taghirad, “Sliding impedance control for improving transparency in telesurgery,” Proc. of the IEEE Int. Conf. on Robot. and Mech., 2014, pp. 209–214.Google Scholar
  21. [21]
    L. Ma and K. Schilling, “Survey on bilateral teleoperation of mobile robots,” Proc. of the IASTED Int. Conf. on Robot. and App., 2007, pp. 489–494.Google Scholar
  22. [22]
    N. Diolaiti and C. Melchiorri, “Haptic tele-operation of a mobile robot,” Proc. of the IFAC Symposium on Robot Control, 2003.Google Scholar
  23. [23]
    I. Elhajj, N. Xi, W. K. Fung, Y. H. Liu, Y. Hasegawa, and T. Fukuda, “Supermedia-enhanced Internet-based telerobotics,” Proc. of the IEEE, vol. 91, no. 3, pp. 396–421, 2003.CrossRefGoogle Scholar
  24. [24]
    E. Slawiñski, V. A. Mut, and J. F. Postigo, “Teleoperation of mobile robots with time-varying delay,” IEEE Trans. Robot., vol. 23, no. 5, pp. 1071–1082, 2007.CrossRefGoogle Scholar
  25. [25]
    F. Janabi-Sharifi and I. Hassanzadeh, “Experimental analysis of mobile-robot teleoperation via shared impedance control,” IEEE Trans. Syst., Man, Cybern. B, vol. 41, no. 2, pp. 591–606, 2011.CrossRefGoogle Scholar
  26. [26]
    I. Farkhatdinov, J. H. Ryu, and J. An, “A preliminary experimental study on haptic teleoperation of mobile robot with variable force feedback gain,” Proc. of the IEEE Haptics Symposium, 2010, pp. 251–256.Google Scholar
  27. [27]
    E. Slawiñski, V. Mut, L. Salinas, and S. García, “Teleoperation of a mobile robot with time-varying delay and force feedback,” Robotica, vol. 30, no. 1, pp. 67–77, 2012.CrossRefGoogle Scholar
  28. [28]
    D. Lee and D. Xu, “Feedback r-passivity of lagrangian systems for mobile robot teleoperation,” Proc. of the IEEE Int. Conf. on Robot. and Autom., Shanghai, CN, 2011, pp. 2118–2123.Google Scholar
  29. [29]
    S. Park, C. Seo, J.-P. Kim, and J. Ryu, “Robustly stable rate-mode bilateral teleoperation using an energybounding approach,” Mechatronics, vol. 21, no. 1, pp. 176–184, 2011.CrossRefGoogle Scholar
  30. [30]
    H. Van Quang, I. Farkhatdinov, and J.-H. Ryu, “Passivity of delayed bilateral teleoperation of mobile robots with ambiguous causalities: time domain passivity approach,” Proc. of the IEEE/RSJ Int. Conf. on Intell. Robots and Syst., 2012, pp. 2635–2640.Google Scholar
  31. [31]
    E. Slawiñski, S. García, L. Salinas, and V. Mut, “PD-like controller with impedance for delayed bilateral teleoperation of mobile robots,” Robotica, vol. 34, no. 9, pp. 2151–2161, 2016.CrossRefGoogle Scholar
  32. [32]
    F. Penizzotto, E. Slawiñski, L. R. Salinas, and V. A. Mut, “Human-centered control scheme for delayed bilateral teleoperation of mobile robots,” Adv. Robot., vol. 29, no. 19, pp. 1253–1268, 2015.CrossRefGoogle Scholar
  33. [33]
    D. Lee, O. Martinez-Palafox, and M. W. Spong, “Bilateral teleoperation of a wheeled mobile robot over delayed communication network,” Proc. of the IEEE Int. Conf. on Robot. and Autom., 2006, pp. 3298–3303.Google Scholar
  34. [34]
    S. Islam, P. X. Liu, A. El Saddik, J. Dias, and L. Seneviratne, “Bilateral shared autonomous systems with passive and nonpassive input forces under time varying delay,” ISA T., vol. 54, pp. 218–228, 2015.CrossRefGoogle Scholar
  35. [35]
    N. Krasovskii, Stability of Motion, Stanford University Press, Stanford, CA, 1963.zbMATHGoogle Scholar
  36. [36]
    O. Camacho and C. A. Smith, “Sliding mode control: an approach to regulate nonlinear chemical processes,” ISA T., vol. 39, no. 2, pp. 205–218, 2000.CrossRefGoogle Scholar
  37. [37]
    P. Gahinet, A. Nemirovski, A. Laub, and M. Chilali, LMI Control Toolbox for Use with MATLAB, MathWorks, Natick, MA, 1995.Google Scholar

Copyright information

© Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lucio R. Salinas
    • 1
    Email author
  • Diego Santiago
    • 1
  • Emanuel Slawiñski
    • 1
  • Vicente A. Mut
    • 1
  • Danilo Chavez
    • 2
  • Paulo Leica
    • 2
  • Oscar Camacho
    • 2
  1. 1.Instituto de Automática (INAUT)Universidad Nacional de San Juan, CONICETSan JuanArgentina
  2. 2.Escuela Politécnica Nacional (EPN), Ladrón de Guevara E11-253QuitoEcuador

Personalised recommendations