New molecular biomarkers in precise diagnosis and therapy of Type 2 diabetes
- 163 Downloads
Abstract
Type 2 diabetes (T2D) is a complex metabolic disease associated with disturbances in metabolism of carbohydrates, lipids and proteins, and largely under the influence of very complex interactions with genetic and environment factors. High prevalence and increasing number of patients with T2D in the world, represent constant challenge for better elucidation of pathogenic mechanisms which contribute to disease development. This paper summarizes a new molecular biomarker that emerged from recent studies in applied genomics, metabolomics and other modern “omics” technologies as powerful tools in diagnosis of T2D. Metabolomics, in this context, has a special potential since it uses newly developed analytical methods in analyses of wide range of metabolites in biological samples. Numbers of prospective studies have shown that changes in the concentration of some individual amino acids, acylcarnitines, hexoses and phospholipids augment or attenuate risk factors for developing T2D. Recently findings shown that polymorphisms in TCF7L2 gene were strongly associated with increasing risk for T2D development while studies of lipidomics, genomics and transcriptomics identified molecular markers for glucose intolerance and other traits. Some specific gene variations were identified which affected de novo lipogenesis and they were significantly associated with concentrations of palmitic, stearic, palmitoleic and oleic acids, the major saturated and unsaturated fatty acids. Development of new trends in analysis and detection of different metabolites, especially fatty acids and amino acids, along with genetic polymorphisms points out new directions in precise diagnosis and therapy of Type 2 diabetes.
Keywords
Biomarkers Omics technologies Type 2 diabetesNotes
Compliance with ethical standards
Conflict of interest
The authors declare that they have no conflict of interest.
References
- 1.Al-Goblan AS, Al-Alfi MA, Khan MZ. Mechanism linking diabetes mellitus and obesity. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2014;7:587–91.CrossRefGoogle Scholar
- 2.Shulman GI. Cellular mechanisms of Insulin resistance. J Clin Invest. 2000;106:171–6.CrossRefGoogle Scholar
- 3.Hussain A, Hydrie MZI, Claussen B, Asghar S. Type 2 diabetes and obesity: A review. Journal of Diabetology. 2010;2:1–7.Google Scholar
- 4.Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol. 2014;6:1–23.CrossRefGoogle Scholar
- 5.Samuel VT, Shulman GI. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest. 2016;126(1):12–22.CrossRefGoogle Scholar
- 6.Prasad RB, Groop L. Genetics of Type 2 Diabetes—Pitfalls and Possibilities. Genes. 2015;6:87–123.CrossRefGoogle Scholar
- 7.Xu J, Zou M-H. Molecular Insights and Therapeutic Targets for Diabetic Endothelial Dysfunction. Circulation. 2009;120:1266–86.CrossRefGoogle Scholar
- 8.So WY, Ng MCY, Lee SC, Sanke T, Lee HK, Chan JCN. Genetics of type 2 diabetes mellitus. HKMJ. 2000;6(1):69–76.Google Scholar
- 9.Brown AE, Walker M. Genetics of insulin resistance and the metabolic syndrome. Curr Cardiol Rep. 2016;18(75):1–8.Google Scholar
- 10.American Diabetes Association. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018, Diabetes Care, Volume: 41(Supplement 1), 2018, ppS13–S27Google Scholar
- 11.International Diabetes Federation (IDF). Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia, 2006Google Scholar
- 12.Stechemesser L, Eder SK, Wagner A, Patsch W, Feldman A, Strasser M, et al. Metabolomic profiling identifies potential pathways involved in the interaction of iron homeostasis with glucose metabolism. Molecular Metabolism. 2017;6:38–47.CrossRefGoogle Scholar
- 13.Yu Z, Kastenmüller G. he Y, Belcredi P, Möller G, Prehn C, Mendes J, et al. Differences between human plasma and serum metabolite profiles. PloS ONE. 2011;6(7):1–6.Google Scholar
- 14.Wopereis S, Radonjic M, Rubingh C, van Erk M, Smilde A, van Duyyvenvoorde W, et al. Identification of prognostic and diagnostic biomarkers of glucose intolerance in ApoE3Leiden mice. Physiol Genomics. 2011;44:293–304.CrossRefGoogle Scholar
- 15.Clash CB. Metabolomics: an emerging but powerful tool for precision medicine. 2015, Cold Spring Harb Mol Case Stud 1: a000588CrossRefGoogle Scholar
- 16.Mayeux R. Biomarkers: potential uses and limitations. The American Society for Experimental Neuro Therapeutics. 2004;1:182–8.CrossRefGoogle Scholar
- 17.Floegel A, Stefan N, Yu Z, Mühlenbruch K, Drogan D, Joost H-G, et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes. 2013;62:639–48.CrossRefGoogle Scholar
- 18.Du F, Virtue A, Wang H, Yang X-F. Metabolomics analyses for atherosclerosis, diabetes, and obesity. Biomarker Research. 2013;1(17):1–17.Google Scholar
- 19.van der Leeuw J, Beulens WJ, van Dieren S, Schalkwijk CG, Glatz JF.C, Hofker MH, Verschuren MW.M, et al. Novel biomarkers to improve the prediction of cardiovascular event Risk in type 2 diabetes mellitus. J Am Heart Assoc. 2016, 5:e003048Google Scholar
- 20.Ahiqvist E, Ahluwalia TS, Groop L. Genetics of type 2 diabetes. Clinical Chemistry. 2011;57(2):241–54.CrossRefGoogle Scholar
- 21.Zhang X, Gao L, Liu Z-P, Chen L. Identifying module biomarker in type 2 diabetes mellitus by discriminative area of functional activity. BMC Bioinformatics. 2015;16(92):1–10.Google Scholar
- 22.Zhao Q, Zhang A, Zong W, An N, Zhang H, Luan Y, et al. Exploring potential biomarkers and determining the metabolic mechanism of type 2 diabetes mellitus using liquid chromatography coupled to high-resolution mass spectrometry. RSC Adv. 2017;7:44186.CrossRefGoogle Scholar
- 23.Prosser GA, Larrouy-Maumus G, de Carvalho LPS. Metabolomics strategies for the identification of new enzyme functions and metabolic pathways. EMBO Reports. 2014;15:657–69.CrossRefGoogle Scholar
- 24.Scott RA, Scott LJ, Mägi R, Marullo L, Gaulton KJ, Kaakinen M, et al. An expanded genome-wide association study of type 2 diabetes in Europeans. Diabetes. 2017;66:2888–902.CrossRefGoogle Scholar
- 25.Kaddurah-Daouk R, Weinshilboum RM. Pharmacometabolomics: implications for clinical pharmacology and systems pharmacology. Clin Pharmacol Ther. 2014;95(2):154–67.CrossRefGoogle Scholar
- 26.Zheng Y, Hu FB. Comprehensive metabolomic profiling of type 2 diabetes. Clinical Chemistry. 2015;61(3):453–5.CrossRefGoogle Scholar
- 27.Park J-E, Jeong G-H, Lee I-K, Yoon Y-R, Liu K-H, Gu N, et al. A Pharmacometabolomic approach to predict response to metformin in early-phase type 2 diabetes mellitus patients. Molecules. 2018;23(1579):1–13.Google Scholar
- 28.Kong H, Liu Y, Zheng L, Wang Q, Zhang Y. One of the crucial proteins to influence type 2 diabetes: the high mobility group A1. Biosci. Biotech. Res. Comm. 2016;9(4):580–6.CrossRefGoogle Scholar
- 29.Billings LK, Florez JC. The genetics of type 2 diabetes: what we learned from GWAS? Ann N Y Acad Sci. 2010;1212:59–77.CrossRefGoogle Scholar
- 30.Goh GYS, Winter JJ, Bhanshali F, Doering KRS, Lai R, Lee K, et al. NHR-49/HNF4 integrates regulation of fatty acid metabolism with a protective transcriptional response to oxidative stress and fasting. Aging Cell. 2018;17:1–14.CrossRefGoogle Scholar
- 31.Mandal S, Causevic A, Prnjavorac B, Semiz S. Non-esterified fatty acids as possible biomarkers in glucose control of prediabetes and type 2 diabetes. J. Res. Pharm. Sci. 2014;1(1):28–38.Google Scholar
- 32.Liu L, Li Y, Guan C, Li K, Wang C, Feng R, et al. Free fatty acid metabolic profile and biomarkers of isolated post-challenge diabetes and type 2 diabetes mellitus based on GC–MS and multivariate statistical analysis. Journal of Chromatography B. 2010;878(28):2817–25.CrossRefGoogle Scholar
- 33.Georgiadi A, Kersten S. Mechanisms of gene regulation by fatty acids. Adv. Nutr. 2012;3:127–34.CrossRefGoogle Scholar
- 34.Tsoukalas D, Alegakis AK, Fragkiadaki P, Papakonstantinou E, Tsilimidos G, Geraci F, et al. Application of metabolomics part II: Focus on fatty acids and their metabolites in healthy adults. International Journal of Molecular edicine. 2019;43:233–42.Google Scholar
- 35.Bi X, Qing Yeo PL, Loo YT, Henry CJ. Associations between circulating fatty acid levels and metabolic risk factors. Journal of Nutrition & Intermediary Metabolism. 2019;15:65–9.CrossRefGoogle Scholar
- 36.Mandal S, Causevic A, Malenica M, Dujić T, Bego T, Prnjavorac B, et al. Free fatty acids as possible biomarkers in control and progression of prediabetes to type 2 diabetes. Diabetologia. 2012;55(Suppl.1):S260.Google Scholar
- 37.Mahendran Y, Cederberg H, Vangipurapu J, Kangas AJ, Soininen P, Kuusisto J, et al. Glycerol and fatty acids in serum predict the development of hyperglycemia and type 2 diabetes in Finnish men. Diabetes Care. 2013;36:3732–8.CrossRefGoogle Scholar
- 38.Hayakawa J, Wang M, Wang C, Han RH, Jiang Z-Y, Han X. Lipidomic analysis reveals significant lipogenesis and accumulation of lipotoxic components in ob/ob mouse organs. PLEFA. 2017;136:161–9.Google Scholar
- 39.Giesbertz P, Padberg I, Rein D, Ecker J, Höfle AS, Spanier B, et al. Metabolite profiling in plasma and tissues of ob/ob and db/db mice identifies novel markers of obesity and type 2 diabetes. Diabetologia. 2015;58:2133–43.CrossRefGoogle Scholar
- 40.Molnos S, Wahl S, Haid M, Eekhoff E.MW, Pool R, Floegel A, Deelen J, et al. Metabolite ratios as potential biomarkers for type 2 diabetes: a DIRECTstudy. Diabetologia. 2018;61:117–129.CrossRefGoogle Scholar
- 41.Hertel JK, Johansson S, Midthjell K, Nygård O, Njølstad PR, Molven A. Type 2 diabetes genes-present status and data from Norwefian studies. Norsk Epidemiologi. 2013;23(1):9–22.CrossRefGoogle Scholar
- 42.Kommoju UJ, Maruda J, Kadarkarai Samy S, Irgam K, Kotla JP, Reddy BM. Association of IRS1, CAPN10, and PPARG gene polymorphisms with type 2 diabetes mellitus in the high-risk population of Hyderabad. India. J Diabetes. 2014;6(6):564–73.CrossRefGoogle Scholar
- 43.Zhang W, Zhong W, Sun Q, Sun X, Zhou Z. Adipose-specific lipin1 overexpression in mice protects against alcohol-induced liver injury. Scientific Reports. 2017;8(408):1–11.Google Scholar
- 44.Kajimoto K, Suemitsu E, Sato Y, Sakurai Y. HarashimaLH. liver-specific silencing of Lipin1 reduces fat mass as well as hepatic triglyceride biosynthesis in mice. Biol. Pharm. Bull. 2016;39:1653–61.Google Scholar
- 45.Frühbeck G, Catalán V, Rodríguez A, Ramírez B, Becerril S. Salvador, Colina I, et al. Adiponectin-leptin Ratio is a Functional Biomarker of Adipose Tissue Inflammation. Nutrients. 2019;11(454):1–13.Google Scholar
- 46.Abbas S, Raza ST, Ahmed F, Ahmad A, Rizvi S, Mahdi F. Association of genetic polymorphism of PPARγ-2, ACE, MTHFR, FABP-2 and FTO genes in risk prediction of type 2 diabetes mellitus. Journal of Biomedical Science. 2013;20(80):1–8.Google Scholar
- 47.Wu JHY, Lemaitre RN. Manichaikul A, Guan W, Tanaka T, Foy M, et al. Genome-wide association study identifies novel loci associated with concentrations of four plasma phospholipid fatty acids in the de novo lipogenesis pathway. Circ Cardiovasc Genet. 2017;6:171–183.Google Scholar
- 48.Merino J, Leong A, Liu C-T, Porneala B, Walford GA, von Grotthuss M, et al. Metabolomics insights into early type 2 diabetes pathogenesis and detection in individuals with normal fasting glucose. Diabetologia. 2018;61:1315–24.CrossRefGoogle Scholar
- 49.Fall T, Xie W, Poon W, Yaghootkar H, Mägi R, Knowles JW, et al. Using genetic variants to assess the relationship between circulating lippids and type 2 diabetes. Diabetes. 2015;64:2676–84.CrossRefGoogle Scholar
- 50.Oki E, Norde MN, Carioca AA. F, Souza JM.P., Castro IA, Marchioni DM.L., Fisberg RM, et al. Polymorphisms of the TNF-α gene interact with plasma fatty acids on inflammatory biomarker profile: a population-based, cross-sectional study in São Paulo, Brazil. British Journal of Nutrition. 2017;117:1663–73.CrossRefGoogle Scholar
- 51.Trojnar M, Patro-Małysza J, Kimber-Trojnar Ž. Leszczyńska_Gorzelak B, Mosiewicz J. Associations between Fatty Acid-Binding Protein 4–A Proinflammatory Adipokine and Insulin Resistance, Gestational and Type 2 Diabetes Mellitus. Cells. 2019;8(227):1–15.Google Scholar
- 52.Huang MC, Chang WT, Chang HY, Chung HF, Chen FP, Huang YF, et al. FADS gene polymorphisms, fatty acid desaturase activities, and HDL-C in Type 2 diabetes. Int J Environ Res Public Health. 2017;28(6):E572.CrossRefGoogle Scholar
- 53.Marklund M, Morris AP, Mahajan A. Ingelsson, Lindgren CM, Lind L, Risérus. Genome-wide association studies of estimated fatty acid desaturase activity in serum and adipose tissue in elderly individuals: associations with insulin sensitivity. Nutrients. 2018;10(1791):1–13.Google Scholar
- 54.Gromovsky AD, Schugar RC, Brown AL, Helsey RN, Burrows AC, Ferguson D, et al. Δ-5 Fatty acid desaturase FADS1 impacts metabolic disease by balancing proinflammatory and proresolving lipid mediators. Arterioscler Thromb Vasc Biol. 2018;38:218–31.CrossRefGoogle Scholar
- 55.Lokvancic H, Mandal S, Adilovic M, Sterner M, Gremsperger G, Ahqvist E, et al. association of FADS1 genetic variation with free fatty acid levels and type 2 diabetes-related traits. Diabetologia. 2018; 61(Suppl:1):559.Google Scholar
- 56.Dorcely B, Katz K, Jagannathan R, Chiang SS, Oluwadare B, Goldberg IJ, et al. Novel biomarkers for prediabetes, diabetes, and associated complications. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2017;10:345–61.CrossRefGoogle Scholar
- 57.Abbasi A. Mendelian randomization studies of biomarkers and type 2 diabetes. Endocrine Connections. 2015;4:249–60.CrossRefGoogle Scholar
- 58.Yang M, Ni C, Chang B, Jiang Z, Zhu Y, Tang Y, et al. association between serum total bilirubin levels and the risk of type 2 diabetes mellitus. Diabetes Research and Clinical Practice. 2019;152:23–8.CrossRefGoogle Scholar
- 59.Brahimaj A, Ligthart S, Ghanbari M, Ikram MA, Hofman A, Franco OH, et al. Novel inflammatory markers for incident pre-diabetes and type 2 diabetes: The Rotterdam Study. Eur J Epidemiol. 2017;32:217–26.CrossRefGoogle Scholar
- 60.Mandal Š, Čaušević A. The correlation between C-reactive protein and regulation of glycemia in type-2 diabetic patients. Bulletin of the Chemists and Technologists of Bosnia and Herzegovina. 2017;48:5–8.Google Scholar
- 61.Ng TW. khan AA, Meikle PJ. Investigating the pathogenesis and risk of type 2 diabetes: clinical applications of metabolomics. Clin. Lipidol. 2012;7(6):641–59.CrossRefGoogle Scholar
- 62.Prattichizzo F, Giuliani A, Ceka A, Rippo M-R, Bonfigli A-R, Testa R, et al. Epigenetic mechanisms of endothelial dysfunction in type 2 diabetes. Clinical Epigenetics. 2015;7(56):1–11.Google Scholar
- 63.De Candia P, Spinetti G, Specchia C, Sangalli E, La Sala L, Uccellatore A, et al. A unique plasma microRNA profile defines type 2 diabetes progression. PLoS ONE. 2017;12(12):e0188980.CrossRefGoogle Scholar
- 64.Yaribeygi H, Katsiki N, Behnam B, Iranpanah H, Sahebkar A. MicroRNAs and type 2 diabetes mellitus: Molecular mechanisms and the effect of antidiabetic drug treatment. Metabolism. 2017;87:48–55.CrossRefGoogle Scholar
- 65.Wagner JA. Early clinical development of pharmaceuticals for type 2 diabetes mellitus: from preclinical models to human investigation. The Journal of Clinical Endocrinology & Metabolism. 2002;87(12):5362–6.CrossRefGoogle Scholar
- 66.Newgard CB. Metabolomics and metabolic diseases: where do we stand? Cell Metabolism. 2017;25:43–56.CrossRefGoogle Scholar