Advertisement

Analysis of vibrational modes from alpha-synuclein: a theoretical model using density functional theory and Raman spectroscopy

  • Fabiola León-BejaranoEmail author
  • Miguel G. Ramírez-Elías
  • Martín O. Méndez
  • Ricardo A. Guirado-López
  • Alfonso Alba
  • Ildelfonso Rodríguez-Leyva
Original Paper
  • 8 Downloads

Abstract

Parkinson’s disease is a neurodegenerative pathology difficult to diagnose. Researches have confirmed the presences of death cells in the brain produced by the modification of a protein called alpha-synuclein synuclein in people with Parkinson disease. Currently, a great amount of research is conducted to identify its biomarkers for early diagnostics. Recently, a studio found differences between the alpha- synuclein of the skin from Parkinson’s disease and normal patients. In this paper, we use Raman spectroscopy through a numerical model to simulate the vibrational modes of well-defined finite clusters of alpha-synuclein in normal and pathological state, using the Gaussian09 software. The results of the model in the range of x − y cm−1 are in good agreement with the experimental Raman spectra acquired from human skin with alpha-synuclein in the normal and pathological state.

Keywords

Raman spectroscopy Parkinson’s disease Density Functional theory Alpha-synuclein 

Notes

Acknowledgments

Research partially supported by grant 414,995 from CONACYT, by FOSEC SEP CB2017 - A1-S-45611, and by FAI-UASLP C18-FAI-05-53.53.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to disclose.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

There is no informed consent.

References

  1. 1.
    Transtornos neurodegenerativos, Enfermedades neurodegenerativas. Dossier Trastornos neurodegenerativos, 2004, pp. 17–19.Google Scholar
  2. 2.
    Albert L, Carles G, Molinuevo José L. Genética de las enfermedades neurodegenerativas más prevalentes. Med Clin. 2006;126(17):662–70.  https://doi.org/10.1157/13087844.CrossRefGoogle Scholar
  3. 3.
    Abril Carreres MA, Ticó Falguera N, Garreta Figuera R. Enfermedades neurodegenerativas. Rehabilitación. 2004;38(6):18–24.  https://doi.org/10.1016/S0048-7120(04)73487-8.CrossRefGoogle Scholar
  4. 4.
    Martín Sánchez FJ, Ramírez Díaz SP, Gregorio Gil P. Las enfermedades neurodegenerativas vistas desde la geriatría. Demencias: concepto, clasificación, valoración clínico diagnóstica y tratamiento. Medicine. 2003;8(108):5786–94.Google Scholar
  5. 5.
    Paulina AB. Neuropatología de las demencias neurodegenerativas. Revista Médica Clínica Las Condes. 2016;27(3):297–308.  https://doi.org/10.1016/j.rmclc.2016.06.004.CrossRefGoogle Scholar
  6. 6.
    González-Torres LC, Armendáriz-Borunda J. Aspectos inmunológicos en la enfermedad de Parkinson. Archivos de neurociencia (Mex). 2005;10(3):168–74.Google Scholar
  7. 7.
    Ulmer TS, Bax A, Cole NB, Nussbaum RL. Structure and Dynamics of Micelle-bound Human α-Synuclein. J Biol Chem. 2005;280(10):9595–603.  https://doi.org/10.1074/jbc.m411805200.CrossRefGoogle Scholar
  8. 8.
    Rodríguez-Leyva I, Calderón-Garcidueñas AL, Jiménez-Capdeville ME, et al. α-Synuclein inclusions in the skin of Parkinson’s disease and parkinsonism. Ann Clin Traslational Neurol. 2014;1(7):471–8.  https://doi.org/10.1002/acn3.78.CrossRefGoogle Scholar
  9. 9.
    Rick C, Keith C. Qualitative analysis and the answer box: A prespective on portable raman spectroscopy. Analytical Chemistry Feature. 2010;82(9):3419–25.  https://doi.org/10.1021/ac901951b.CrossRefGoogle Scholar
  10. 10.
    Maiti NC, Apetri MM, Zagorski MG, Carey PR, Vernon A. Raman Spectroscopic Characterization of Secondary Structure in Natively Unfolded Proteins: α-Synuclein. J Am Chem Soc. 2004;126:2399–408.  https://doi.org/10.1021/ja0356176.CrossRefGoogle Scholar
  11. 11.
    Apetri Mihaela M, Maiti Nakul C, Zargorski Michael G, et al. Secondary structure of α-Synuclein oligomers: Characterization by Raman and Atomic Force Microscopy. J Mol Biol. 2006;355(1):63–71.  https://doi.org/10.1016/j.jmb.2005.10.071.CrossRefGoogle Scholar
  12. 12.
    Chuchu W, Chunyu Z, Li D, Zhiqi T, Ying L, Jiajie D, et al. Versatile Structures of a-Synuclein. Front Mol Neurosci. 2016;9(48):1–8.  https://doi.org/10.3389/fnmol.2016.00048.Google Scholar
  13. 13.
    Jorgensen WL, Swenson CJ. Optimized Intermolecular Potential Functions for Amides and Peptides. Structure and Properties of Liquid Amides American Chemical Society. 1985;107(3):569–78.  https://doi.org/10.1021/ja00289a008.Google Scholar
  14. 14.
    Jian Z, Lu L, Zachary T, Kam K, Qi L, Jun R. Simulated Raman Spectral Analysis of Organic Molecules, vol. 10526. San Francisco: Physics and Simulation of Optoelectronic Devices XXVI; 2018. p. 1): 1–9.  https://doi.org/10.1117/12.2291176.Google Scholar
  15. 15.
    Kieron B. Perspective on density functional theory. J Chem Phys. 2012;136(15):150901–9.  https://doi.org/10.1063/1.4704546.CrossRefGoogle Scholar
  16. 16.
    Orio M, Pantazis DA, Neese F. Density functional theory. Photosynth Res. 2009;102(2–3):443–53.  https://doi.org/10.1007/s11120-009-9404-8.CrossRefGoogle Scholar

Copyright information

© IUPESM and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Fabiola León-Bejarano
    • 1
    Email author
  • Miguel G. Ramírez-Elías
    • 1
  • Martín O. Méndez
    • 2
  • Ricardo A. Guirado-López
    • 3
  • Alfonso Alba
    • 2
  • Ildelfonso Rodríguez-Leyva
    • 4
  1. 1.Facultad de CienciasUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  2. 2.Laboratorio Nacional CI3M & CICSaBUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  3. 3.Instituto de FísicaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  4. 4.Facultad de MedicinaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico

Personalised recommendations