Advertisement

A review of melanin sensor devices

  • Vangelis George KanellisEmail author
Review
  • 19 Downloads

Abstract

Knowing how readily the skin produces melanin is invaluable in reducing photochemical and phototherapy overtreatment in dermatology and also in reducing the risk of actinic skin damage and skin cancer from excessive radiant light exposure. The commonly used Fitzpatrick skin type (FST) classification scale is often used to subjectively assess ultraviolet light sensitivity and susceptibility to sunburn following significant sunlight exposure. However, the FST scale falls short in the assessment of nonwhite skin types. Alternatively, commercially available melanin sensor devices, called melanometers, can be used to objectively quantify useful skin parameters such as the epidermal melanin concentration (EMC). This study reviews commercially available melanometers and their use in quantifying epidermal melanin concentration (EMC) and the individual maximum safe radiant exposure (IMSRE) for an individual in clinical, workplace and community settings.

Keywords

Melanin Melanometers Epidermis 

Notes

Compliance with ethical standards

Conflict of interest

Vangelis George Kanellis declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

References

  1. Asawanonda P, Anderson RR, Chang Y, Taylor CR (2000) 308-nm excimer laser for the treatment of psoriasis: a dose-response study. JAMA Dermatol 136(5):619–624.  https://doi.org/10.1001/archderm.136.5.619 CrossRefGoogle Scholar
  2. Ash C, Town G, Bjerring P, Webster S (2015) Evaluation of a novel skin tone meter and the correlation between Fitzpatrick skin type and skin color. Photonics Lasers Med 4:177–186.  https://doi.org/10.1515/plm-2013-0056 CrossRefGoogle Scholar
  3. Bashkatov AN, Genina EA, Kochubey VI, Stolnitz MM, Bashkatova TA, Novikova OV, Peshkova AY, Tuchin VV (2000). Optical properties of melanin in the skin and skinlike phantoms. Proc SPIE 4162:219–226.  https://doi.org/10.1117/12.405946
  4. Baquié M, Kasraee B (2014) Discrimination between cutaneous pigmentation and erythema: comparison of the skin colorimeters Dermacatch and Mexameter. Skin Res Technol 20(2):218–227.  https://doi.org/10.1111/srt.12109 CrossRefGoogle Scholar
  5. Bhargava P, Prakash C, Tiwari S, Lakhani R (2016) Correlating melanin index to repigmentation potential: a novel prognostic tool in vitiligo. Pigment Int 3(2):72–76.  https://doi.org/10.4103/2349-5847.196296 CrossRefGoogle Scholar
  6. Bhatnagar A, Kanwar A, Parsad D, De D (2007) Psoralen and ultraviolet A and narrow-band ultraviolet B in inducing stability in vitiligo, assessed by vitiligo disease activity score: an open prospective comparative study. J Eur Acad Dermatol Venereol 21(10):1381–1385.  https://doi.org/10.1111/j.1468-3083.2007.02283.x CrossRefGoogle Scholar
  7. Cheun WL (2004) The chemical structure of melanin. Pigment Cell Res 17(4):422–423.  https://doi.org/10.1111/j.1600-0749.2004.00165_1.x CrossRefGoogle Scholar
  8. Dawson JB, Barker DJ, Ellis DJ, Cotterill JA, Grassam E, Fisher GW, Feather JW (1980) A theoretical and experimental study of light absorption and scattering by in vivo skin. Phys Med Biol 25(4):695–709.  https://doi.org/10.1088/0031-9155/25/4/008 CrossRefGoogle Scholar
  9. Dolotov LE, Sinichkin YP, Tuchin VV, Utz SR, Altshuler GB, Yaroslavsky IV (2004) Design and evaluation of a novel portable erythema-melanin-meter. Lasers Surg Med 34(2):127–135.  https://doi.org/10.1002/lsm.10233 CrossRefGoogle Scholar
  10. Edwards EA, Duntley SQ (1939) The pigments and color of living human skin. Am J Anat 65(1):1–33.  https://doi.org/10.1002/aja.1000650102 CrossRefGoogle Scholar
  11. Eilers S, Bach DQ, Gaber R, Blatt H, Guevara Y, Nitsche K, Kundu RV, Robinson JK (2013) Accuracy of self-report in assessing Fitzpatrick skin phototypes I through VI. JAMA Dermatol 149(11):1289–1294.  https://doi.org/10.1001/jamadermatol.2013.6101 CrossRefGoogle Scholar
  12. Ha T, Javedan H, Waterston K, Naysmith L, Rees JL (2003) The relationship between constitutive pigmentation and sensitivity to ultraviolet radiation induced erythema is dose–dependent. Pigment Cell Res 16(5):477–479.  https://doi.org/10.1034/j.1600-0749.2003.00076.x CrossRefGoogle Scholar
  13. Ito S (2003) A chemist’s view of melanogenesis. Pigment Cell Res 16(3):230–236.  https://doi.org/10.1034/j.1600-0749.2003.00037.x CrossRefGoogle Scholar
  14. Kaidbey KH, Agin PP, Sayre RM, Kligman AM (1979) Photoprotection by melanin--a comparison of black and Caucasian skin. J Am Acad Dermatol 1(3):249–260.  https://doi.org/10.1016/S0190-9622(79)70018-1 CrossRefGoogle Scholar
  15. Kailas A, Solomon J, Mostow E, Rigel D, Kittles R, Taylor S et al (2017) Use of a modified Fitzpatrick scale in the understanding of skin cancer risk among people of color. J Am Acad Dermatol 76(6):AB276–AB276.  https://doi.org/10.1016/j.jaad.2017.04.1073 Google Scholar
  16. Karsten AE, Smit JE (2012) Modeling and verification of melanin concentration on human skin type. Photochem Photobiol 88(2):469–474.  https://doi.org/10.1111/j.1751-1097.2011.01044.x CrossRefGoogle Scholar
  17. Khairallah G, Amouroux M, Plénat F, Rakotomanga P, Soussen C, Marchal F, Delconte A, Chen H & Blondel W. (2018) Spatially resolved spectroscopy for guiding margin delineation during human skin carcinomas resection: first clinical results on diffuse reflectance and autofluorescence spectra and in vivo skin optical properties, Proc. SPIE, 10685, Biophotonics: photonic solutions for better health care VI, 106851J.  https://doi.org/10.1117/12.2309516
  18. Kollias N, Baqer A (1986) On The assessment of melanin in human skin in vivo. Photochem Photobiol 43(1):49–54.  https://doi.org/10.1111/j.1751-1097.1986.tb05590.x CrossRefGoogle Scholar
  19. Kollias N, Baqer AH (1987) Absorption mechanisms of human melanin in the visible, 400-720 nm. J Investig Dermatol 89(4):384–388.  https://doi.org/10.1111/1523-1747.ep12471764 CrossRefGoogle Scholar
  20. Kollias N, Sayre RM, Zeise L, Chedekel MR (1991) Photoprotection by melanin. J Photochem Photobiol B Biol 9(2):135–160.  https://doi.org/10.1016/1011-1344(91)80147-A CrossRefGoogle Scholar
  21. Kuchel JM, Barnetson RSC, Halliday GM (2002) Ultraviolet A augments solar-simulated ultraviolet radiation-induced local suppression of recall responses in humans. J Investig Dermatol 118(6):1032–1037.  https://doi.org/10.1046/j.1523-1747.2002.01773.x CrossRefGoogle Scholar
  22. Liu Z, Zerubia J (2015) Skin image illumination modeling and chromophore identification for melanoma diagnosis. Phys Med Biol 60(9):3415–3431.  https://doi.org/10.1088/0031-9155/60/9/3415 CrossRefGoogle Scholar
  23. Matias AR, Ferreira M, Costa P, Neto P (2015) Skin colour, skin redness and melanin biometric measurements: comparison study between Antera 3D, Mexameter and colorimeter. Skin Res Technol 21(3):346–362.  https://doi.org/10.1111/srt.12199 CrossRefGoogle Scholar
  24. Matts P, Dykes PJ, Marks R (2007) The distribution of melanin in skin determined in vivo. Br J Dermatol 156(4):620–628.  https://doi.org/10.1111/j.1365-2133.2006.07706.x CrossRefGoogle Scholar
  25. Meredith P, Sarna T (2006) The physical and chemical properties of eumelanin. Pigment Cell Res 19(6):572–594.  https://doi.org/10.1111/j.1600-0749.2006.00345.x CrossRefGoogle Scholar
  26. Michel APM, Liakat S, Bors K, Gmachl CF (2013) In vivo measurement of mid-infrared light scattering from human skin. Biomed Opt Express 4(4):520.  https://doi.org/10.1364/BOE.4.000520 CrossRefGoogle Scholar
  27. Nakagawa H, Imokawa G (1996) Characterization of melanogenesis in normal human epidermal melanocytes by chemical and ultrastructural analysis. Pigment Cell Res 9(4):175–178.  https://doi.org/10.1111/j.1600-0749.1996.tb00106.x CrossRefGoogle Scholar
  28. Nisma M, Yanke L, Ryo M, Hwan GC, Allison SD, Jinhua W, Suita Y, Weng QY, Allouche J, Kemeny LV, Hermann, Andrea L, Roider EM, Gray NS, Fisher DE (2017) A UV-independent topical small-molecule approach for melanin production in human skin. Cell Rep 19(11):2177–2184.  https://doi.org/10.1016/j.celrep.2017.05.042 CrossRefGoogle Scholar
  29. Njoo MD, Das PK, Bos JD, Westerhof W (1999) Association of the Köbner phenomenon with disease activity and therapeutic responsiveness in vitiligo vulgaris. Arch Dermatol 135(4):407–413.  https://doi.org/10.1001/archderm.135.4.407 CrossRefGoogle Scholar
  30. Piérard GE, Hermanns-Lê T, Piérard SL, Dewalque L, Charlier C, Piérard-Franchimont C, Delvenne P (2014) In vivo skin fluorescence imaging in young Caucasian adults with early malignant melanomas. Clin Cosmet Investig Dermatol 7:225–230.  https://doi.org/10.2147/CCID.S66929 CrossRefGoogle Scholar
  31. Selvaag E, Caspersen L, Bech-Thomsen N, Olivarius FDF, Wulf HC (2000) Optimized UVB treatment of psoriasis: a controlled, left-right comparison trial. J Eur Acad Dermatol Venereol 14(1):19–21.  https://doi.org/10.1046/j.1468-3083.2000.00012.x CrossRefGoogle Scholar
  32. Shin JW, Lee DH, Choi SY, Na JI, Park KC, Youn SW, Huh CH (2011) Objective and non-invasive evaluation of photorejuvenation effect with intense pulsed light treatment in Asian skin. J Eur Acad Dermatol Venereol 25(5):516–522.  https://doi.org/10.1111/j.1468-3083.2010.03815.x CrossRefGoogle Scholar
  33. Shin JW, Yoon SW, Jeong JB, Park KC (2014) Different responses of the melanin index to ultraviolet irradiation in relation to skin color and body site. Photodermatol Photoimmunol Photomed 30(6):308–315.  https://doi.org/10.1111/phpp.12133 CrossRefGoogle Scholar
  34. Stamatas GN, Zmudzka BZ, Kollias N, Beer JZ (2004) Non-invasive measurements of skin pigmentation in situ. Pigment Cell Res 17(6):618–626.  https://doi.org/10.1111/j.1600-0749.2004.00204.x CrossRefGoogle Scholar
  35. Sundaram H (2014) Prospective pilot evaluation of a novel unipolar radiofrequency device with dermal rolling mechanism for rejuvenation of Fitzpatrick skin phototypes III to V. J Am Acad Dermatol 70(5):AB200.  https://doi.org/10.1016/j.jaad.2014.01.829 Google Scholar
  36. Tawakkul S, Kerscher M (2017) Comparative evaluation of the skin physiology of Fitzpatrick skin phototypes I through IV by biophysical measuring methods. J Am Acad Dermatol 76(6):AB77–AB77.  https://doi.org/10.1016/j.jaad.2017.04.316 Google Scholar
  37. Thompson MJW, Jones G, Aitken DA (2018) Constitutive melanin density is associated with higher 25-hydroxyvitamin D and potentially total body BMD in older Caucasian adults via increased sun tolerance and exposure. Osteoporos Int 29(8):1887–1895.  https://doi.org/10.1007/s00198-018-4568-8 CrossRefGoogle Scholar
  38. Treesirichod A, Chansakulporn S, Wattanapan P (2014) Correlation between skin color evaluation by skin color scale chart and narrowband reflectance spectrophotometer. Indian J Dermatol 59(4):339.  https://doi.org/10.4103/0019-5154.135476 CrossRefGoogle Scholar
  39. Van Der Wal M, Bloemen M, Verhaegen P, Tuinebreijer W, De Vet H, Van Zuijlen P, Middelkoop E (2013) Objective color measurements: clinimetric performance of three devices on normal skin and scar tissue. J Burn Care Res 34(3):e187–e194.  https://doi.org/10.1097/BCR.0b013e318264bf7d CrossRefGoogle Scholar
  40. Verkruysse W, Jia W, Franco W, Milner TE, Nelson JS (2007) Infrared measurement of human skin temperature to predict the individual maximum safe radiant exposure (IMSRE). Lasers Surg Med 39(10):757–766.  https://doi.org/10.1002/lsm.20581 CrossRefGoogle Scholar
  41. Verkruysse W, Svaasand LO, Franco W, Nelson JS (2009) Remittance at a single wavelength of 390 nm to quantify epidermal melanin concentration. J Biomed Opt 14(1):014005.  https://doi.org/10.1117/1.3065542 CrossRefGoogle Scholar
  42. Watt AAR, Bothma JP, Meredith P (2009) The supramolecular structure of melanin. Soft Matter 5(19):3754–3760.  https://doi.org/10.1039/B902507C CrossRefGoogle Scholar
  43. Wright CY, Karsten AE, Wilkes M, Singh A, Plessis J, Albers PN, Karsten PA (2016) Diffuse reflectance spectroscopy versus Mexameter® MX18 measurements of melanin and erythema in an African population. Photochem Photobiol 92(4):632–636.  https://doi.org/10.1111/php.12607 CrossRefGoogle Scholar
  44. Zhang C, Maslov K, Wang LV (2010) Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo. Opt Lett 35(19):3195.  https://doi.org/10.1364/OL.35.003195 CrossRefGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The Canberra HospitalCanberraAustralia

Personalised recommendations