Advertisement

Cellular dynamics of mammalian red blood cell production in the erythroblastic island niche

  • Jia Hao YeoEmail author
  • Yun Wah Lam
  • Stuart T. FraserEmail author
Review

Abstract

Red blood cells, or erythrocytes, make up approximately a quarter of all cells in the human body with over 2 billion new erythrocytes made each day in a healthy adult human. This massive cellular production system is coupled with a set of cell biological processes unique to mammals, in particular, the elimination of all organelles, and the expulsion and destruction of the condensed erythroid nucleus. Erythrocytes from birds, reptiles, amphibians and fish possess nuclei, mitochondria and other organelles: erythrocytes from mammals lack all of these intracellular components. This review will focus on the dynamic changes that take place in developing erythroid cells that are interacting with specialized macrophages in multicellular clusters termed erythroblastic islands. Proerythroblasts enter the erythroblastic niche as large cells with active nuclei, mitochondria producing heme and energy, and attach to the central macrophage via a range of adhesion molecules. Proerythroblasts then mature into erythroblasts and, following enucleation, in reticulocytes. When reticulocytes exit the erythroblastic island, they are smaller cells, without nuclei and with few mitochondria, possess some polyribosomes and have a profoundly different surface molecule phenotype. Here, we will review, step-by-step, the biophysical mechanisms that regulate the remarkable process of erythropoiesis with a particular focus on the events taking place in the erythroblastic island niche. This is presented from the biological perspective to offer insight into the elements of red blood cell development in the erythroblastic island niche which could be further explored with biophysical modelling systems.

Keywords

Erythroblastic island Mammalian erythropoiesis Nuclear condensation 

Notes

Acknowledgments

STF thanks the members of the Laboratory of Blood Cell Development for their feedback. YWL was supported by sabbatical leave granted by the City University of Hong Kong. In particular, we thank Dr. Badwi Bob Boumelhem for his assistance with confocal imaging. Confocal images presented here were prepared using the Zeiss LSM800 confocal system supported by the Ian Potter Foundation. We acknowledge the Bosch Institute Advanced Microscopy Facility and technical support by Mr. Chad Moore and Mr. Mohammad Nasir Uddin.

Compliance with ethical standards

This work was performed with appropriate ethical approval.

Funding

JHY gratefully acknowledges the support of Professor NGW and Mrs. Ann Macintosh Memorial Scholarship, Discipline of Anatomy and Histology, University of Sydney. The work from the Laboratory of Blood Cell Development, University of Sydney, presented here is supported by NWG Macintosh Memorial Award. STF gratefully thanks the Discipline of Anatomy and Histology, University of Sydney, for their support.

Conflict of interest

Jia Hao Yeo declares that he has no conflict of interest. Yun Wah Lam declares that he has no conflict of interest. Stuart T. Fraser declares that he has no conflict of interest.

Ethical approval

This work was performed with the appropriate animal ethics committee (University of Sydney) approval.

References

  1. Ahlqvist KJ, Leoncini S, Pecorelli A et al (2015) MtDNA mutagenesis impairs elimination of mitochondria during erythroid maturation leading to enhanced erythrocyte destruction. Nat Commun 6:6494.  https://doi.org/10.1038/ncomms7494 CrossRefPubMedGoogle Scholar
  2. Al-Drees MA, Yeo JH, Boumelhem BB et al (2015) Making blood: the haematopoietic niche throughout ontogeny. Stem Cells Int 2015:571893–571814.  https://doi.org/10.1155/2015/571893 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alvarez-Dominguez JR, Zhang X, Hu W (2017) Widespread and dynamic translational control of red blood cell development. Blood 129:619–629.  https://doi.org/10.1182/blood-2016-09-741835 CrossRefPubMedPubMedCentralGoogle Scholar
  4. An X, Mohandas N (2011) Erythroblastic islands, terminal erythroid differentiation and reticulocyte maturation. Int J Hematol 93:139–143.  https://doi.org/10.1007/s12185-011-0779-x CrossRefPubMedGoogle Scholar
  5. Anselmo A, Lauranzano E, Soldani C et al (2016) Identification of a novel agrin-dependent pathway in cell signaling and adhesion within the erythroid niche. Cell Death Differ 23:1322–1330.  https://doi.org/10.1038/cdd.2016.10 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Antoniou M, Carmo-Fonseca M, Ferreira J, Lamond AI (1993) Nuclear organization of splicing snRNPs during differentiation of murine erythroleukemia cells in vitro. J Cell Biol 123:1055–1068.  https://doi.org/10.1083/jcb.123.5.1055 CrossRefPubMedGoogle Scholar
  7. Beck KA, Nelson WJ (1996) The spectrin-based membrane skeleton as a membrane protein-sorting machine. Am J Phys Cell Phys 270:C1263–C1270.  https://doi.org/10.1152/ajpcell.1996.270.5.C1263 CrossRefGoogle Scholar
  8. Bell AJ, Satchwell TJ, Heesom KJ et al (2013) Protein distribution during human erythroblast enucleation in vitro. PLoS One 8:e60300–e60312.  https://doi.org/10.1371/journal.pone.0060300 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bertazzo S, Maidment SCR, Kallepitis C et al (2015) Fibres and cellular structures preserved in 75-million-year-old dinosaur specimens. Nat Commun 6:7352.  https://doi.org/10.1038/ncomms8352 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bessis M (1955) Analytical review: phase contrast microscopy and electron microscopy applied to the blood cells: general review. Blood 10:272–286PubMedGoogle Scholar
  11. Bessis M (1958) Erythroblastic island, functional unity of bone marrow. Rev Hematol 13:8–11PubMedGoogle Scholar
  12. Bessis M (1973) Living blood cells and their ultrastructure. Springer-Verlag, BerlinGoogle Scholar
  13. Bessis MC, Breton-Gorius J (1962) Iron metabolism in the bone marrow as seen by electron microscopy: a critical review. Blood 19:635–663PubMedGoogle Scholar
  14. Bessis M, Weed RI (1973) The structure of normal and pathologic erythrocytes. Adv Biol Med Phys 14:35–91CrossRefPubMedGoogle Scholar
  15. Biggiogera M, Bottone MG, Scovassi AI et al (2004) Rearrangement of nuclear ribonucleoprotein (RNP)-containing structures during apoptosis and transcriptional arrest. Biol Cell 96:603–615.  https://doi.org/10.1016/j.biolcel.2004.04.013 CrossRefPubMedGoogle Scholar
  16. Blanc L, Vidal M (2010) Reticulocyte membrane remodeling: contribution of the exosome pathway. Curr Opin Hematol 17:177.  https://doi.org/10.1097/MOH.0b013e328337b4e3 CrossRefPubMedGoogle Scholar
  17. Blanc L, Liu J, Vidal M et al (2009) The water channel aquaporin-1 partitions into exosomes during reticulocyte maturation: implication for the regulation of cell volume. Blood 114:3928–3934.  https://doi.org/10.1182/blood-2009-06-230086 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Boulon S, Westman BJ, Hutten S et al (2010) The nucleolus under stress. Mol Cell 40:216–227.  https://doi.org/10.1016/j.molcel.2010.09.024 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Breton-Gorius JG (1975) Fine structural and cytochemical identification of microperoxisomes in developing human erythrocytic cells. Am J Pathol 79:523PubMedPubMedCentralGoogle Scholar
  20. Breton-Gorius J, Reyes F (1976) Ultrastructure of human bone marrow cell maturation. Int Rev Cytol 46:251–321CrossRefPubMedGoogle Scholar
  21. Brinkley BR (1985) Microtubule organizing centers. Annu Rev Cell Biol 1:145–172CrossRefPubMedGoogle Scholar
  22. Bröske A-M, Vockentanz L, Kharazi S et al (2009) DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat Genet 41:1207–1215.  https://doi.org/10.1038/ng.463 CrossRefPubMedGoogle Scholar
  23. Cantù C, Bosè F, Bianchi P et al (2012) Defective erythroid maturation in gelsolin mutant mice. Haematologica 97:980–988.  https://doi.org/10.3324/haematol.2011.052522 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Carlile GW, Smith DH, Wiedmann M (2004) Caspase-3 has a nonapoptotic function in erythroid maturation. Blood 103:4310–4316.  https://doi.org/10.1182/blood-2003-09-3362 CrossRefPubMedGoogle Scholar
  25. Chen K, Liu J, Heck S et al (2009) Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis. Proc Natl Acad Sci U S A 106:17413–17418.  https://doi.org/10.1073/pnas.0909296106 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Chow A, Huggins M, Ahmed J et al (2013) CD169+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat Med 19:429–436.  https://doi.org/10.1038/nm.3057 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Chassis JA, Mohandas N (2008) Erythroblastic islands: niches for erythropoiesis. Blood 112(3):470–8.  https://doi.org/10.1182/blood-2008-03-077883. http://www.bloodjournal.org/content/bloodjournal/112/3/470.full.pdf
  28. Chu TTT, Sinha A, Malleret B et al (2017) Quantitative mass spectrometry of human reticulocytes reveal proteome-wide modifications during maturation. Br J Haematol 180:118–133.  https://doi.org/10.1111/bjh.14976 CrossRefPubMedGoogle Scholar
  29. Cohen WD (1978) Observations of the marginal band system of nucleated erythrocytes. J Cell Biol 78:260–273.  https://doi.org/10.1083/jcb.78.1.260 CrossRefPubMedGoogle Scholar
  30. Cohen WD, Terwilliger NB (1979) Marginal bands in camel erythrocytes. J Cell Sci 36:97–107PubMedGoogle Scholar
  31. Corberand JX (1996) Reticulocyte analysis using flow cytometry. Hematol Cell Theor 38:487–494.  https://doi.org/10.1007/s00282-996-0487-9 CrossRefGoogle Scholar
  32. Corces MR, Buenrostro JD, Wu B et al (2016) Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat Genet 48:1193–1203.  https://doi.org/10.1038/ng.3646 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Curradi M, Izzo A, Badaracco G, Landsberger N (2002) Molecular mechanisms of gene silencing mediated by DNA methylation. Mol Cell Biol 22:3157–3173.  https://doi.org/10.1128/MCB.22.9.3157-3173.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Dahm R, Gribbon C, Quinlan RA, Prescott AR (1998) Changes in the nucleolar and coiled body compartments precede lamina and chromatin reorganization during fibre cell denucleation in the bovine lens. Eur J Cell Biol 75:237–246.  https://doi.org/10.1016/S0171-9335(98)80118-0 CrossRefPubMedGoogle Scholar
  35. Dehler A (1895) Beitrag zur kenntnis des feineren baues der roten blutkörperchen beim hühnerembryo. Archiv f mikrosk Anat 46:414–430.  https://doi.org/10.1007/BF02906662
  36. DeVilbiss AW, Sanalkumar R, Hall BDR et al (2015) Epigenetic determinants of erythropoiesis: role of the histone methyltransferase SetD8 in promoting erythroid cell maturation and survival. Mol Cell Biol 35:2073–2087.  https://doi.org/10.1128/MCB.01422-14 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Díaz-Varela M, de Menezes-Neto A, Perez-Zsolt D et al (2018) Proteomics study of human cord blood reticulocyte-derived exosomes. Nat Publ Group 8:14046.  https://doi.org/10.1038/s41598-018-32386-2 CrossRefGoogle Scholar
  38. Diwan A, Koesters AG, Odley AM et al (2007) Unrestrained erythroblast development in Nix−/− mice reveals a mechanism for apoptotic modulation of erythropoiesis. PNAS 104:6794–6799.  https://doi.org/10.1073/pnas.0610666104 CrossRefPubMedGoogle Scholar
  39. Dorigo B, Schalch T, Bystricky K, Richmond TJ (2003) Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J Mol Biol 327(1):85–96. Elsevier.  https://doi.org/10.1016/S0022-2836(03)00025-1 CrossRefPubMedGoogle Scholar
  40. Doyonnas R, Nielsen JS, Chelliah S et al (2005) Podocalyxin is a CD34-related marker of murine hematopoietic stem cells and embryonic erythroid cells. Blood 105:4170–4178.  https://doi.org/10.1182/blood-2004-10-4077 CrossRefPubMedGoogle Scholar
  41. Dvorak AM, Dvorak HF, Karnovsky MJ (1972) Cytochemical localization of peroxidase activity in the developing erythrocyte. Am J Pathol 67:303PubMedPubMedCentralGoogle Scholar
  42. Dzierzak E, Philipsen S (2013) Erythropoiesis: development and differentiation. Cold Spring Harb Perspect Med 3:a011601.  https://doi.org/10.1101/cshperspect.a011601 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Elste A, Sullivan ME, Murphy MJ (1987) The ultrastructure of erythropoiesis in vitro: description and utilization of a new methodology. Stem Cells 5:385–400.  https://doi.org/10.1002/stem.5530050504 CrossRefGoogle Scholar
  44. Eskiw CH, Fraser P (2011) Ultrastructural study of transcription factories in mouse erythroblasts. J Cell Sci 124:3676–3683.  https://doi.org/10.1242/jcs.087981 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Fabriek BO, Polfliet MMJ, Vloet RPM et al (2007) The macrophage CD163 surface glycoprotein is an erythroblast adhesion receptor. Blood 109:5223–5229.  https://doi.org/10.1182/blood-2006-08-036467 CrossRefPubMedGoogle Scholar
  46. Figueroa AA, Fasano JD, Martinez-Morilla S et al (2018) miR-181a regulates erythroid enucleation via the regulation of Xpo7 expression. Haematologica 103:e341–e344.  https://doi.org/10.3324/haematol.2017.171785 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Filmanowicz E, Gurney CW (1961) Studies on erythropoiesis: XVI. Response to a single dose of erythropoietin in polycythemic mouse. J Lab Clin Med 57:65–72.  https://doi.org/10.5555/uri:pii:0022214361900105 CrossRefPubMedGoogle Scholar
  48. Flygare J, Karlsson S (2007) Diamond-Blackfan anemia: erythropoiesis lost in translation. Blood 109:3152–3154.  https://doi.org/10.1182/blood-2006-09-001222 CrossRefPubMedGoogle Scholar
  49. Fraser PJ, Curtis PJ (1987) Specific pattern of gene expression during induction of mouse erythroleukemia cells. Genes Dev 1:855–861.  https://doi.org/10.1101/gad.1.8.855 CrossRefPubMedGoogle Scholar
  50. Fraser ST, Isern J, Baron MH (2007) Maturation and enucleation of primitive erythroblasts during mouse embryogenesis is accompanied by changes in cell-surface antigen expression. Blood 109:343–352.  https://doi.org/10.1182/blood-2006-03-006569 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Fraser ST, Midwinter RG, Berger BS, Stocker R (2011) Heme oxygenase-1: a critical link between Iron metabolism, erythropoiesis, and development. Adv Hematol 2011:473709–473706.  https://doi.org/10.1155/2011/473709 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Fraser ST, Midwinter RG, Coupland LA et al (2015) Heme oxygenase-1 deficiency alters erythroblastic island formation, steady-state erythropoiesis and red blood cell lifespan in mice. Haematologica 100:601–610.  https://doi.org/10.3324/haematol.2014.116368 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Fromm GF, Bulger MB (2009) A spectrum of gene regulatory phenomena at mammalian β-globin gene loci This paper is one of a selection of papers published in this special issue, entitled 30th Annual International Asilomar Chromatin and Chromosomes Conference, and has undergone the Journal’s usual peer review process. Biochem Cell Biol doi:  https://doi.org/10.1139/O09-048
  54. Fujieda A, Katayama N, Ohishi K et al (2005) A putative role for histone deacetylase in the differentiation of human erythroid cells. Int J Oncol 27:743–748.  https://doi.org/10.3892/ijo.27.3.743 CrossRefPubMedGoogle Scholar
  55. Gaehtgens P, Schmidt F, Will G (1981) Comparative rheology of nucleated and non-nucleated red blood cells. Pflugers Arch 390:278–282.  https://doi.org/10.1007/BF00658276 CrossRefPubMedGoogle Scholar
  56. Gallagher PG (2013) Disorders of red cell volume regulation. Curr Opin Hematol 20:201–207.  https://doi.org/10.1097/MOH.0b013e32835f6870 CrossRefPubMedGoogle Scholar
  57. Gasko O, Danon D (1974) Endocytosis and exocytosis in membrane remodelling during reticulocyte maturation. Br J Haematol 28:463–470CrossRefPubMedGoogle Scholar
  58. Gautier EF, Ducamp S, Leduc M et al (2016). Comprehensive Proteomic Analysis of Human Erythropoiesis. Cell Rep 16(5):1470–1484.  https://doi.org/10.1016/j.celrep.2016.06.085
  59. Gnanapragasam MN, Bieker JJ (2017) Orchestration of late events in erythropoiesis by KLF1/EKLF. Curr Opin Hematol 24:183–190.  https://doi.org/10.1097/MOH.0000000000000327 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Gnanapragasam MN, McGrath KE, Catherman S et al (2016) EKLF/KLF1-regulated cell cycle exit is essential for erythroblast enucleation. Blood 128:1631–1641.  https://doi.org/10.1182/blood-2016-03-706671 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Granger B (1982) Structural associations of synemin and vimentin filaments in avian erythrocytes revealed by immunoelectron microscopy. Cell 30:263–275.  https://doi.org/10.1016/0092-8674(82)90032-0 CrossRefPubMedGoogle Scholar
  62. Granger BL, Repasky EA, Lazarides E (1982) Synemin and vimentin are components of intermediate filaments in avian erythrocytes. J Cell Biol 92:299–312.  https://doi.org/10.1083/jcb.92.2.299 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Grasso JA (1966) Cytoplasmic microtubules in mammalian erythropoietic cells. Anat Rec 156:397–413.  https://doi.org/10.1002/ar.1091560404 CrossRefPubMedGoogle Scholar
  64. Grasso JA, Sullivan AL, Chan SC (1978) Studies of the endoplasmic reticulum and plasma membrane-bound ribosomes in erythropoietic cells. J Cell Sci 31:165–78. https://jcs.biologists.org/content/joces/31/1/165.full.pdfz
  65. Green EL (1966) Biology of the laboratory mouse. 2nd edition. Dover Publications Inc, New York, 1966Google Scholar
  66. Gregory CJ, Eaves AC (1978) Three stages of erythropoietic progenitor cell differentiation distinguished by a number of physical and biologic properties. Blood 51:527–537PubMedGoogle Scholar
  67. Grosso R, Fader CM, Colombo MI (2017) Autophagy: a necessary event during erythropoiesis. Blood Rev 31:300–305.  https://doi.org/10.1016/j.blre.2017.04.001 CrossRefPubMedGoogle Scholar
  68. Hagerstrand H, Danieluk M, Bobrowska-Hagerstrand M et al (2009) The lamprey (Lampetra fluviatilis) erythrocyte; morphology, ultrastructure, major plasma membrane proteins and phospholipids, and cytoskeletal organization. Mol Membr Biol 16:195–204.  https://doi.org/10.1080/096876899294661 CrossRefGoogle Scholar
  69. Hattangadi SM, Martinez-Morilla S, Patterson HC et al (2014) Histones to the cytosol: exportin 7 is essential for normal terminal erythroid nuclear maturation. Blood 124:1931–1940.  https://doi.org/10.1182/blood-2013-11-537761 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Hayashi Y, Kuroda T, Kishimoto H et al (2014) Downregulation of rRNA transcription triggers cell differentiation. PLoS One 9:e98586.  https://doi.org/10.1371/journal.pone.0098586 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Hendzel MJ, Wei Y, Mancini MA et al (1997) Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106:348–360.  https://doi.org/10.1007/s004120050256
  72. Heynen MJ, Verwilghen RL (1982) A quantitative ultrastructural study of normal rat erythroblasts and reticulocytes. Cell Tissue Res 224(2):397–408CrossRefPubMedGoogle Scholar
  73. Higashi O, Koseki E, Higuchi M (1953) A case of Fanconi’s syndrome with a study of peroxidase activity of the erythron. Arch Dis Child 28:359CrossRefPubMedPubMedCentralGoogle Scholar
  74. Horos R, IJspeert H, Pospisilova D et al (2012) Ribosomal deficiencies in Diamond-Blackfan anemia impair translation of transcripts essential for differentiation of murine and human erythroblasts. Blood 119:262–272.  https://doi.org/10.1182/blood-2011-06-358200 CrossRefPubMedGoogle Scholar
  75. Hunt JA (1976) Ribonucleic acid synthesis in rabbit erythroid cells. Biochem J 160:727–744.  https://doi.org/10.1042/bj1600727 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Huttenlocker AK, Farmer CG (2017) Bone microvasculature tracks red blood cell size diminution in Triassic mammal and dinosaur forerunners. Curr Biol 27:48–54.  https://doi.org/10.1016/j.cub.2016.10.012 CrossRefPubMedGoogle Scholar
  77. Isern J, Fraser ST, He Z, Baron MH (2008) The fetal liver is a niche for maturation of primitive erythroid cells. Proc Natl Acad Sci U S A 105:6662–6667.  https://doi.org/10.1073/pnas.0802032105 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Isern J, Fraser ST, He Z et al (2010) Dose-dependent regulation of primitive erythroid maturation and identity by the transcription factor Eklf. Blood 116:3972–3980.  https://doi.org/10.1182/blood-2010-04-281196 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Jacobsen RN, Forristal CE, Raggatt LJ et al (2014) Mobilization with granulocyte colony-stimulating factor blocks medullar erythropoiesis by depleting F4/80(+)VCAM1(+)CD169(+)ER-HR3(+)Ly6G(+) erythroid island macrophages in the mouse. Exp Hematol 42:547–61.e4.  https://doi.org/10.1016/j.exphem.2014.03.009 CrossRefPubMedGoogle Scholar
  80. Jacobsen RN, Nowlan B, Brunck ME et al (2016) Fms-like tyrosine kinase 3 (Flt3) ligand depletes erythroid island macrophages and blocks medullar erythropoiesis in the mouse. Exp Hematol 44:207–212.e4.  https://doi.org/10.1016/j.exphem.2015.11.004 CrossRefPubMedGoogle Scholar
  81. Jarzebowski L, Le Bouteiller M, Coqueran S et al (2018) Mouse adult hematopoietic stem cells actively synthesize ribosomal RNA. RNA 24:1803–1812.  https://doi.org/10.1261/rna.067843.118 CrossRefPubMedGoogle Scholar
  82. Jayapal SR, Lee KL, Ji P et al (2010) Down-regulation of Myc is essential for terminal erythroid maturation. J Biol Chem 285:40252–40265.  https://doi.org/10.1074/jbc.M110.181073 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Ji P, Jayapal SR, Lodish HF (2008) Enucleation of cultured mouse fetal erythroblasts requires Rac GTPases and mDia2. Nat Cell Biol 2008 10:11 10:314–321. doi:  https://doi.org/10.1038/ncb1693
  84. Ji P, Yeh V, Ramirez T et al (2010) Histone deacetylase 2 is required for chromatin condensation and subsequent enucleation of cultured mouse fetal erythroblasts. Haematologica 95:2013–2021.  https://doi.org/10.3324/haematol.2010.029827 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Joseph-Silverstein J, Cohen WD (1984) The cytoskeletal system of nucleated erythrocytes. III. Marginal band function in mature cells. J Cell Biol 98:2118–2125.  https://doi.org/10.1083/jcb.98.6.2118 CrossRefPubMedGoogle Scholar
  86. Kalfa TA, Pushkaran S, Zhang X et al (2010) Rac1 and Rac2 GTPases are necessary for early erythropoietic expansion in the bone marrow but not in the spleen. Haematologica 95:27–35.  https://doi.org/10.3324/haematol.2009.006239 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Kamiyama R (1971) An electron microscopic study of erythroleukemia, with special reference to the structure of erythroblasts. Pathol Int 21:231–241.  https://doi.org/10.1111/j.1440-1827.1971.tb00121.x CrossRefGoogle Scholar
  88. Kaur A, Brigden KWL, Cashman TF et al (2015) Mitochondrially targeted redox probe reveals the variations in oxidative capacity of the haematopoietic cells. Org Biomol Chem 13:6686–6689.  https://doi.org/10.1039/c5ob00928f CrossRefPubMedGoogle Scholar
  89. Kaur A, Jankowska K, Pilgrim C et al (2016) Studies of hematopoietic cell differentiation with a ratiometric and reversible sensor of mitochondrial reactive oxygen species. Antioxid Redox Signal 24:667–679.  https://doi.org/10.1089/ars.2015.6495 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Kawane K, Fukuyama H, Kondoh G et al (2001) Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver. Science 292:1546–1549.  https://doi.org/10.1126/science.292.5521.1546 CrossRefPubMedGoogle Scholar
  91. Keerthivasan G, Small S, Liu H et al (2010) Vesicle trafficking plays a novel role in erythroblast enucleation. Blood 116:3331–3340.  https://doi.org/10.1182/blood-2010-03-277426 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Keerthivasan G, Wickrema A, Crispino JD (2011) Erythroblast enucleation. Stem Cells Int 2011:1–9.  https://doi.org/10.4061/2011/139851 CrossRefGoogle Scholar
  93. Kim S, Yu N-K, Kaang B-K (2015) CTCF as a multifunctional protein in genome regulation and gene expression. Exp Mol Med 2015 47:6 47:e166–e166. doi:  https://doi.org/10.1038/emm.2015.33
  94. Klinken S (2002) Red blood cells. Int J Biochem Cell Biol 34:1513–1518.  https://doi.org/10.1016/S1357-2725(02)00087-0 CrossRefGoogle Scholar
  95. Kobayashi I, Ubukawa K, Sugawara K et al (2016) Erythroblast enucleation is a dynein-dependent process. Exp Hematol 44:247–256.e12.  https://doi.org/10.1016/j.exphem.2015.12.003 CrossRefPubMedGoogle Scholar
  96. Koury ST, Koury MJ, Bondurant MC (1989) Cytoskeletal distribution and function during the maturation and enucleation of mammalian erythroblasts. J Cell Biol 109:3005–3013.  https://doi.org/10.1083/jcb.109.6.3005 CrossRefPubMedGoogle Scholar
  97. Krauss SW, Lo AJ, Short SA et al (2005) Nuclear substructure reorganization during late-stage erythropoiesis is selective and does not involve caspase cleavage of major nuclear substructural proteins. Blood 106:2200–2205.  https://doi.org/10.1182/blood-2005-04-1357 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Kusakabe M, Hasegawa K, Hamada M et al (2011) c-Maf plays a crucial role for the definitive erythropoiesis that accompanies erythroblastic island formation in the fetal liver. Blood 118:1374–1385.  https://doi.org/10.1182/blood-2010-08-300400 CrossRefPubMedGoogle Scholar
  99. Lamond AI, Spector DL (2003) Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol 4:605–612.  https://doi.org/10.1038/nrm1172 CrossRefPubMedGoogle Scholar
  100. Langemeijer SMC, Kuiper RP, Berends M et al (2009) Acquired mutations in <i>TET2</i> are common in myelodysplastic syndromes. Nat Genet 41:838–842.  https://doi.org/10.1038/ng.391 CrossRefPubMedGoogle Scholar
  101. Lara-Astiaso D, Weiner A, Lorenzo-Vivas E et al (2014) Chromatin state dynamics during blood formation. Science 345:943–949.  https://doi.org/10.1126/science.1256271 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Lasch J, Küllertz G, Opalka JR (2000) Separation of erythrocytes into age-related fractions by density or size? Counterflow centrifugation. Clin Chem Lab Med 38:254.  https://doi.org/10.1515/CCLM.2000.092 CrossRefGoogle Scholar
  103. Lee G (2006) Targeted gene deletion demonstrates that the cell adhesion molecule ICAM-4 is critical for erythroblastic island formation. Blood 108:2064–2071.  https://doi.org/10.1182/blood-2006-03-006759 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Lee JCM, Gimm JA, Lo AJ et al (2004) Mechanism of protein sorting during erythroblast enucleation: role of cytoskeletal connectivity. Blood 103:1912–1919.  https://doi.org/10.1182/blood-2003-03-0928 CrossRefPubMedGoogle Scholar
  105. Li J, Hale J, Bhagia P et al (2014) Isolation and transcriptome analyses of human erythroid progenitors: BFU-E and CFU-E. Blood 124:3636–3645.  https://doi.org/10.1182/blood-2014-07-588806 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Li Y, Schulz VP, Deng C et al (2016) Setd1a and NURF mediate chromatin dynamics and gene regulation during erythroid lineage commitment and differentiation. Nucleic Acids Res 44:7173–7188.  https://doi.org/10.1093/nar/gkw327 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Li X, Mei Y, Yan B et al (2017) Histone deacetylase 6 regulates cytokinesis and erythrocyte enucleation through deacetylation of formin protein mDia2. Haematologica 102:984–994.  https://doi.org/10.3324/haematol.2016.161513 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Liao C, Carlson BA, Paulson RF, Prabhu KS (2018) The intricate role of selenium and selenoproteins in erythropoiesis. Free Radic Biol Med.  https://doi.org/10.1016/j.freeradbiomed.2018.04.578
  109. Liu X-S, Li X-H, Wang Y et al (2007) Disruption of palladin leads to defects in definitive erythropoiesis by interfering with erythroblastic island formation in mouse fetal liver. Blood 110:870–876.  https://doi.org/10.1182/blood-2007-01-068528 CrossRefPubMedGoogle Scholar
  110. Liu AP, Aguet F, Danuser G, Schmid SL (2010a) Local clustering of transferrin receptors promotes clathrin-coated pit initiation. J Cell Biol 191:1381–1393.  https://doi.org/10.1083/jcb.201008117 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Liu J, Guo X, Mohandas N et al (2010b) Membrane remodeling during reticulocyte maturation. Blood 115:2021–2027.  https://doi.org/10.1182/blood-2009-08-241182 CrossRefPubMedPubMedCentralGoogle Scholar
  112. Liu Y, Lu C, Yang Y et al (2011) Influence of histone tails and H4 tail acetylations on nucleosome-nucleosome interactions. J Mol Biol 414:749–764.  https://doi.org/10.1016/j.jmb.2011.10.031 CrossRefPubMedGoogle Scholar
  113. Llères D, James J, Swift S et al (2009) Quantitative analysis of chromatin compaction in living cells using FLIM–FRET. J Cell Biol 187:481–496.  https://doi.org/10.1083/jcb.200907029 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Ludwig LS, Gazda HT, Eng JC et al (2014) Altered translation of GATA1 in Diamond-Blackfan anemia. Nat Med 20:748–753.  https://doi.org/10.1038/nm.3557 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Malleret B, Li A, Zhang R et al (2015) Plasmodium vivax: restricted tropism and rapid remodeling of CD71-positive reticulocytes. Blood 125:1314–1324.  https://doi.org/10.1182/blood-2014-08-596015 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Manwani D, Bieker JJ (2008) The erythroblastic island. Curr Top Dev Biol 82:23–53.  https://doi.org/10.1016/S0070-2153(07)00002-6 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Mardin BR, Schiebel E (2012) Breaking the ties that bind: new advances in centrosome biology. J Cell Biol 197:11–18.  https://doi.org/10.1083/jcb.201108006 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Martin RM, Cardoso MC (2009) Chromatin condensation modulates access and binding of nuclear proteins. FASEB J.  https://doi.org/10.1096/fj.08-128959
  119. Maser MD, Philpott CW (1964) Marginal bands in nucleated erythrocytes. Anat Rec 150:365–381.  https://doi.org/10.1002/ar.1091500405 CrossRefPubMedGoogle Scholar
  120. Matushansky I, Radparvar F, Skoultchi AI (2000) Manipulating the onset of cell cycle withdrawal in differentiated erythroid cells with cyclin-dependent kinases and inhibitors. Blood 96:2755–2764PubMedGoogle Scholar
  121. Maul GG, Deaven L (1977) Quantitative determination of nuclear pore complexes in cycling cells with differing DNA content. J Cell Biol 73:748–760.  https://doi.org/10.1083/jcb.73.3.748 CrossRefPubMedPubMedCentralGoogle Scholar
  122. McGrath KE, Bushnell TP, Palis J (2008a) Multispectral imaging of hematopoietic cells: where flow meets morphology. J Immunol Methods 336:91–97.  https://doi.org/10.1016/j.jim.2008.04.012 CrossRefPubMedPubMedCentralGoogle Scholar
  123. McGrath KE, Kingsley PD, Koniski AD et al (2008b) Enucleation of primitive erythroid cells generates a transient population of “pyrenocytes” in the mammalian fetus. Blood 111:2409–2417.  https://doi.org/10.1182/blood-2007-08-107581 CrossRefPubMedPubMedCentralGoogle Scholar
  124. McGrath KE, Catherman SC, Palis J (2017) Delineating stages of erythropoiesis using imaging flow cytometry. Methods 112:68–74.  https://doi.org/10.1016/j.ymeth.2016.08.012 CrossRefPubMedGoogle Scholar
  125. Mills EW, Wangen J, Green R, Ingolia NT (2016) Dynamic regulation of a ribosome rescue pathway in erythroid cells and platelets. Cell Rep 17:1–10.  https://doi.org/10.1016/j.celrep.2016.08.088 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Miura AB, Shibata A, Akihama T et al (1974) Ultrastructure of the developing erythrocytes. Tohoku J Exp Med 112:299–313.  https://doi.org/10.1620/tjem.112.299 CrossRefPubMedGoogle Scholar
  127. Miyanishi M, Tada K, Koike M et al (2007) Identification of Tim4 as a phosphatidylserine receptor. Nature 450:435–439.  https://doi.org/10.1038/nature06307 CrossRefPubMedGoogle Scholar
  128. Moras M, Lefevre SD, Ostuni MA (2017) From erythroblasts to mature red blood cells: organelle clearance in mammals. Front Physiol 8:295.  https://doi.org/10.3389/fphys.2017.01076 CrossRefGoogle Scholar
  129. Mortensen M, Simon AK (2010) Nonredundant role of Atg7 in mitochondrial clearance during erythroid development. Autophagy 6:423–425CrossRefPubMedGoogle Scholar
  130. Mortensen M, Ferguson DJP, Edelmann M et al (2010) Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. PNAS 107:832–837.  https://doi.org/10.1073/pnas.0913170107 CrossRefPubMedGoogle Scholar
  131. Moura PL, Hawley BR, Mankelow TJ et al (2018) Non-muscle myosin II drives vesicle loss during human reticulocyte maturation. Haematologica 103:1997–2007.  https://doi.org/10.3324/haematol.2018.199083 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Murphy DB, Wallis KT (1983) Isolation of microtubule protein from chicken erythrocytes and determination of the critical concentration for tubulin polymerization in vitro and in vivo. J Biol Chem 258:8357–8364PubMedGoogle Scholar
  133. Murphy DB, Wallis KT (1985) Erythrocyte microtubule assembly in vitro. Determination of the effects of erythrocyte tau, tubulin isoforms, and tubulin oligomers on erythrocyte tubulin assembly, and comparison with brain microtubule assembly. J Biol Chem 260:12293–12301PubMedGoogle Scholar
  134. Naetar N, Korbei B, Kozlov S, et al (2008) Loss of nucleoplasmic LAP2α–lamin A complexes causes erythroid and epidermal progenitor hyperproliferation. Nat Cell Biol 2008 10:11 10:1341–1348. doi:  https://doi.org/10.1038/ncb1793
  135. Nakamura M, Hamada M, Hasegawa K et al (2009) c-Maf is essential for the F4/80 expression in macrophages in vivo. Gene 445:66–72.  https://doi.org/10.1016/j.gene.2009.06.003 CrossRefPubMedGoogle Scholar
  136. Nicolas V, Mouro-Chanteloup I et al (2006) Functional interaction between Rh proteins and the spectrin-based skeleton in erythroid and epithelial cells. Transfus Clin Biol 13(1-2):23–28CrossRefPubMedGoogle Scholar
  137. Nowak RB, Papoin J, Gokhin DS et al (2017) Tropomodulin 1 controls erythroblast enucleation via regulation of F-actin in the enucleosome. Blood 130:1144–1155.  https://doi.org/10.1182/blood-2017-05-787051 CrossRefPubMedPubMedCentralGoogle Scholar
  138. O'Connell KE, Mikkola AM, Stepanek AM et al (2015) Practical murine hematopathology: a comparative review and implications for research. Comp Med 65(2):96–113PubMedPubMedCentralGoogle Scholar
  139. Orlic D, Gordon AS, Rhodin JA (1965) An ultrastructural study of erythropoietin-induced red cell formation in mouse spleen. J Ultrastruct Res 13(5):516–542CrossRefPubMedGoogle Scholar
  140. Ovchynnikova E, Aglialoro F, von Lindern M, van den Akker E (2018) The shape shifting story of reticulocyte maturation. Front Physiol 9:66–14.  https://doi.org/10.3389/fphys.2018.00829 CrossRefGoogle Scholar
  141. Patel VP, Ciechanover A, Platt O, Lodish HF (1985) Mammalian reticulocytes lose adhesion to fibronectin during maturation to erythrocytes. PNAS 82:440–444.  https://doi.org/10.1073/pnas.82.2.440 CrossRefPubMedGoogle Scholar
  142. Paul J, Conkie D, Burgos H (1973) Effects of erythropoietin on cell populations and macromolecular syntheses in foetal mouse erythroid cells. Development 29:453–472Google Scholar
  143. Pease DC (1956) An electron microscopic study of red bone marrow. Blood 11:501–526PubMedGoogle Scholar
  144. Phengchat R, Takata H, Morii K, et al (2016) Calcium ions function as a booster of chromosome condensation. Sci Rep 2016 6 6:38281. doi:  https://doi.org/10.1038/srep38281
  145. Polliack A (1981) The contribution of scanning electron microscopy in haematology: its role in defining leucocyte and erythrocyte disorders. J Microsc 123:177–187.  https://doi.org/10.1111/j.1365-2818.1981.tb01293.x CrossRefPubMedGoogle Scholar
  146. Popova EY, Krauss SW, Short SA et al (2009) Chromatin condensation in terminally differentiating mouse erythroblasts does not involve special architectural proteins but depends on histone deacetylation. Chromosom Res 17:47–64.  https://doi.org/10.1007/s10577-008-9005-y CrossRefGoogle Scholar
  147. Porcu S, Manchinu MF, Marongiu MF et al (2011) Klf1 affects DNase II-alpha expression in the central macrophage of a fetal liver Erythroblastic Island: a non-cell-autonomous role in definitive erythropoiesis. Mol Cell Biol 31:4144–4154.  https://doi.org/10.1128/MCB.05532-11 CrossRefPubMedPubMedCentralGoogle Scholar
  148. Quadrini KJ, Gruzglin E, Bieker JJ. (2008) Non-random subcellular distribution of variant EKLF in erythroid cells. Exp Cell Res 314(7):1595–604.  https://doi.org/10.1016/j.yexcr.2008.01.033. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2358985/pdf/nihms45987
  149. Quarmyne M-O, Risinger M, Linkugel A et al (2011) Defining a phenotype for red cell volume regulation and potassium chloride cotransport. Blood Cells Mol Dis 47:95–99.  https://doi.org/10.1016/j.bcmd.2011.04.007 CrossRefPubMedPubMedCentralGoogle Scholar
  150. Ramos P, Casu C, Gardenghi S et al (2013) Macrophages support pathological erythropoiesis in polycythemia vera and & beta -thalassemia. Nat Med 19:437–445.  https://doi.org/10.1038/nm.3126 CrossRefPubMedPubMedCentralGoogle Scholar
  151. Repasky EA, Eckert BS (1981) Microtubules in mammalian erythroblasts. Are marginal bands present? Anat Embryol 162:419–424.  https://doi.org/10.1007/BF00301867 CrossRefPubMedGoogle Scholar
  152. Rieder D, Trajanoski Z, McNally J (2012) Transcription factories. Front Genet.  https://doi.org/10.3389/fgene.2012.00221
  153. Rifkind RA (1964) Alterations in polyribosomes during erythroid cell maturation. J Cell Biol 22:599–611.  https://doi.org/10.1083/jcb.22.3.599 CrossRefPubMedPubMedCentralGoogle Scholar
  154. Rifkind RA, Luzzatto L, Marks PA (1964) Size of polyribosomes in intact reticulocytes. Proc Natl Acad Sci U S A 52:1227CrossRefPubMedPubMedCentralGoogle Scholar
  155. Sadahira Y, Yasuda T, Kimoto T (1991) Regulation of Forssman antigen expression during maturation of mouse stromal macrophages in haematopoietic foci. Immunology 73:498–504PubMedPubMedCentralGoogle Scholar
  156. Salomao M, Chen K, Villalobos J et al (2010) Hereditary spherocytosis and hereditary elliptocytosis: aberrant protein sorting during erythroblast enucleation. Blood 116:267–269.  https://doi.org/10.1182/blood-2010-02-264127 CrossRefPubMedPubMedCentralGoogle Scholar
  157. Sanchez I, Cohen WD (1994) Localization of tau and other proteins of isolated marginal bands. Cell Motil Cytoskeleton 27:350–360.  https://doi.org/10.1002/cm.970270407 CrossRefPubMedGoogle Scholar
  158. Sangiorgi F, Woods CM, Lazarides E (1990) Vimentin downregulation is an inherent feature of murine erythropoiesis and occurs independently of lineage. Development 110:85–96PubMedGoogle Scholar
  159. Sasaki K, Matsumura G, Ito T (1982) Morphometric analysis of postnatal erythropoiesis in the spleen and bone marrow of the mouse. Arch Histol Jpn 45:247–255CrossRefPubMedGoogle Scholar
  160. Sasmono RT, Oceandy D, Pollard JW et al (2003) A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 101:1155–1163.  https://doi.org/10.1182/blood-2002-02-0569 CrossRefPubMedGoogle Scholar
  161. Satchwell TJ, Hawley BR, Bell AJ et al (2015) The cytoskeletal binding domain of band 3 is required for multiprotein complex formation and retention during erythropoiesis. Haematologica 100:133–142.  https://doi.org/10.3324/haematol.2014.114538 CrossRefPubMedPubMedCentralGoogle Scholar
  162. Schoenfelder S, Sexton T, Chakalova L et al (2010) Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat Genet 42:53–61.  https://doi.org/10.1038/ng.496 CrossRefPubMedGoogle Scholar
  163. Schweers RL, Zhang J, Randall MS et al (2007) NIX is required for programmed mitochondrial clearance during reticulocyte maturation. PNAS 104:19500–19505.  https://doi.org/10.1073/pnas.0708818104 CrossRefPubMedGoogle Scholar
  164. Seu KG, Papoin J, Fessler R et al (2017) Unraveling macrophage heterogeneity in Erythroblastic Islands. Front Immunol 8:1140.  https://doi.org/10.3389/fimmu.2017.01140 CrossRefPubMedPubMedCentralGoogle Scholar
  165. Shav-Tal Y, Blechman J, Darzacq X et al (2005) Dynamic sorting of nuclear components into distinct nucleolar caps during transcriptional inhibition. MBoC 16:2395–2413.  https://doi.org/10.1091/mbc.e04-11-0992 CrossRefPubMedGoogle Scholar
  166. Shearstone JR, Pop R, Bock C et al (2011) Global DNA demethylation during mouse erythropoiesis in vivo. Science 334:799–802.  https://doi.org/10.1126/science.1207306 CrossRefPubMedPubMedCentralGoogle Scholar
  167. Shearstone JR, Golonzhka O, Chonkar A et al (2016) Chemical inhibition of histone deacetylases 1 and 2 induces fetal hemoglobin through activation of GATA2. PLoS ONE 11:e0153767.  https://doi.org/10.1371/journal.pone.0153767
  168. Shemin D, RITTENBERG D (1946) The life span of the human red blood cell. J Biol Chem 166:627–636Google Scholar
  169. Shyu Y-C, Lee T-L, Wen S-C et al (2007) Subcellular transport of EKLF and switch-on of murine adult βmaj globin gene transcription. Mol Cell Biol 27:2309–2323.  https://doi.org/10.1128/MCB.01875-06 CrossRefPubMedPubMedCentralGoogle Scholar
  170. Simpson CF, Kling JM (1967) The mechanism of denucleation in circulating erythroblasts. J Cell Biol 35:237–245.  https://doi.org/10.1083/jcb.35.1.237 CrossRefPubMedPubMedCentralGoogle Scholar
  171. Skutelsky E, Danon D (1967) An electron microscopic study of nuclear elimination from the late erythroblasts. J Cell Biol 33:625–635.  https://doi.org/10.1083/jcb.33.3.625 CrossRefPubMedPubMedCentralGoogle Scholar
  172. Skutelsky E, Danon D (1972) On the expulsion of the erythroid nucleus and its phagocytosis. Anat Rec 173:123–126.  https://doi.org/10.1002/ar.1091730111 CrossRefPubMedGoogle Scholar
  173. Smetana K, Likovský Z (1984) Nucleolar silver-stained granules in maturing erythroid and granulocytic cells. Cell Tissue Res 237:367–370.  https://doi.org/10.1007/BF00217159 CrossRefPubMedGoogle Scholar
  174. Soni S, Bala S, Gwynn B et al (2006) Absence of erythroblast macrophage protein (Emp) leads to failure of erythroblast nuclear extrusion. J Biol Chem 281:20181–20189.  https://doi.org/10.1074/jbc.M603226200 CrossRefPubMedGoogle Scholar
  175. Soni S, Bala S, Kumar A, Hanspal M (2007) Changing pattern of the subcellular distribution of erythroblast macrophage protein (Emp) during macrophage differentiation. Blood Cells Mol Dis 38:25–31.  https://doi.org/10.1016/j.bcmd.2006.09.005 CrossRefPubMedGoogle Scholar
  176. Soni S, Bala S, Hanspal M (2008) Requirement for erythroblast-macrophage protein (Emp) in definitive erythropoiesis. Blood Cells Mol Dis 41:141–147.  https://doi.org/10.1016/j.bcmd.2008.03.008 CrossRefPubMedGoogle Scholar
  177. Spring FA, Griffiths RE, Mankelow TJ et al (2013) Tetraspanins CD81 and CD82 facilitate α4β1-mediated adhesion of human erythroblasts to vascular cell adhesion molecule-1. PLoS One 8:e62654.  https://doi.org/10.1371/journal.pone.0062654 CrossRefPubMedPubMedCentralGoogle Scholar
  178. Stadhouders R, Thongjuea S, Soler CA et al (2012) Dynamic long-range chromatin interactions control Myb proto-oncogene transcription during erythroid development. EMBO J 31:986–999.  https://doi.org/10.1038/emboj.2011.450 CrossRefPubMedGoogle Scholar
  179. Su MY, Steiner LA, Bogardus H et al (2013) Identification of biologically relevant enhancers in human erythroid cells. J Biol Chem 288:8433–8444.  https://doi.org/10.1074/jbc.M112.413260 CrossRefPubMedPubMedCentralGoogle Scholar
  180. Sui Z, Nowak RB, Bacconi A et al (2014) Tropomodulin3-null mice are embryonic lethal with anemia due to impaired erythroid terminal differentiation in the fetal liver. Blood 123:758–767.  https://doi.org/10.1182/blood-2013-03-492710 CrossRefPubMedPubMedCentralGoogle Scholar
  181. Swartz KL, Wood SN, Murthy T et al (2017) E2F-2 promotes nuclear condensation and enucleation of terminally differentiated erythroblasts. Mol Cell Biol 37:e00274–e00216.  https://doi.org/10.1128/MCB.00274-16 CrossRefPubMedGoogle Scholar
  182. Toda S, Segawa K, Nagata S (2014) MerTK-mediated engulfment of pyrenocytes by central macrophages in erythroblastic islands. Blood 123:3963–3971.  https://doi.org/10.1182/blood-2014-01-547976 CrossRefPubMedGoogle Scholar
  183. Torrano V, Navascués J, Docquier F et al (2006) Targeting of CTCF to the nucleolus inhibits nucleolar transcription through a poly(ADP-ribosyl)ation-dependent mechanism. J Cell Sci 119:1746–1759.  https://doi.org/10.1242/jcs.02890 CrossRefPubMedGoogle Scholar
  184. Vacaru AM, Isern J, Fraser ST, Baron MH (2013) Analysis of primitive erythroid cell proliferation and enucleation using a cyan fluorescent reporter in transgenic mice. Genesis 51:751–762.  https://doi.org/10.1002/dvg.22420 CrossRefPubMedGoogle Scholar
  185. van Deurs B, Behnke O (1973) The microtubule marginal band of mammalian red blood cells. Z Anat Entwickl Gesch 143:43–47.  https://doi.org/10.1007/BF00519909 CrossRefGoogle Scholar
  186. Wada T, Kikuchi J, Nishimura N et al (2009) Expression levels of histone deacetylases determine the cell fate of hematopoietic progenitors. J Biol Chem 284:30673–30683.  https://doi.org/10.1074/jbc.M109.042242 CrossRefPubMedPubMedCentralGoogle Scholar
  187. Wang J, Ramirez T, Ji P et al (2012) Mammalian erythroblast enucleation requires PI3K-dependent cell polarization. J Cell Sci 125:340–349.  https://doi.org/10.1242/jcs.088286 CrossRefPubMedPubMedCentralGoogle Scholar
  188. Wang L, Yu H, Cheng H et al (2017) Deletion of Stk40 impairs definitive erythropoiesis in the mouse fetal liver. Cell Death Dis 8:e2722.  https://doi.org/10.1038/cddis.2017.148 CrossRefPubMedPubMedCentralGoogle Scholar
  189. Waugh RE, Mantalaris A, Bauserman RG et al (2001) Membrane instability in late-stage erythropoiesis. Blood 97:1869–1875.  https://doi.org/10.1182/blood.V97.6.1869 CrossRefPubMedGoogle Scholar
  190. Wei Q, Boulais PE, Zhang D et al (2019) Maea expressed by macrophages, but not erythroblasts, maintains postnatal murine bone marrow erythroblastic islands. Blood 133:1222–1232.  https://doi.org/10.1182/blood-2018-11-888180 CrossRefPubMedGoogle Scholar
  191. Wilkins BJ, Rall NA, Ostwal Y et al (2014) A cascade of histone modifications induces chromatin condensation in mitosis. Science 343:77–80.  https://doi.org/10.1126/science.1244508 CrossRefPubMedGoogle Scholar
  192. Winogradoff D, Echeverria I, Potoyan DA, Papoian GA (2015) The acetylation landscape of the H4 histone tail: disentangling the interplay between the specific and cumulative effects. J Am Chem Soc https://pubs.acs.org/doi/abs/10.1021/jacs.5b00235
  193. Wölwer CB, Pase LB, Pearson HB et al (2015) A chemical screening approach to identify novel key mediators of erythroid enucleation. PLoS One 10:e0142655.  https://doi.org/10.1371/journal.pone.0142655 CrossRefPubMedPubMedCentralGoogle Scholar
  194. Wölwer CB, Pase LB, Russell SM, Humbert PO (2016) Calcium signaling is required for erythroid enucleation. PLoS One 11:e0146201.  https://doi.org/10.1371/journal.pone.0146201 CrossRefPubMedPubMedCentralGoogle Scholar
  195. Wölwer CB, Gödde N, Pase LB et al (2017) The asymmetric cell division regulators Par3, scribble and pins/Gpsm2 are not essential for erythroid development or enucleation. PLoS One 12:e0170295.  https://doi.org/10.1371/journal.pone.0170295 CrossRefPubMedPubMedCentralGoogle Scholar
  196. Wu J, Zhou L-Q, Yu W et al (2014) PML4 facilitates erythroid differentiation by enhancing the transcriptional activity of GATA-1. Blood 123:261–270.  https://doi.org/10.1182/blood-2013-02-483289 CrossRefPubMedGoogle Scholar
  197. Xu Y, Leung CG, Lee DC, et al (2006) MTB, the murine homolog of condensin II subunit CAP-G2, represses transcription and promotes erythroid cell differentiation. Leukemia 2006 20:7 20:1261–1269. doi:  https://doi.org/10.1038/sj.leu.2404252
  198. Xu Y, Swartz KL, Siu KT, et al (2014) Fbw7-dependent cyclin E regulation ensures terminal maturation of bone marrow erythroid cells by restraining oxidative metabolism. Oncogene 2013 33:24 33:3161–3171. doi:  https://doi.org/10.1038/onc.2013.289
  199. Xue L, Galdass M, Gnanapragasam MN et al (2014) Extrinsic and intrinsic control by EKLF (KLF1) within a specialized erythroid niche. Development 141:2245–2254.  https://doi.org/10.1242/dev.103960 CrossRefPubMedPubMedCentralGoogle Scholar
  200. Yan H, Wang Y, Qu X et al (2017) Distinct roles for TET family proteins in regulating human erythropoiesis. Blood 129:2002–2012.  https://doi.org/10.1182/blood-2016-08-736587 CrossRefPubMedPubMedCentralGoogle Scholar
  201. Yang C, Hashimoto M, Lin QXX et al (2019) Sphingosine-1-phosphate signaling modulates terminal erythroid differentiation through the regulation of mitophagy. Exp Hematol.  https://doi.org/10.1016/j.exphem.2019.01.004
  202. Yellajoshyula D, Brown DT (2006) Global modulation of chromatin dynamics mediated by dephosphorylation of linker histone H1 is necessary for erythroid differentiation. PNAS 103:18568–18573.  https://doi.org/10.1073/pnas.0606478103 CrossRefPubMedGoogle Scholar
  203. Yeo JH, Cosgriff MP, Fraser ST (2018) Analyzing the formation, morphology, and integrity of Erythroblastic Islands. Methods Mol Biol. 133–152.  https://doi.org/10.1007/978-1-4939-7428-3_8
  204. Yeo JH, McAllan BM, Fraser ST (2016) Scanning electron microscopy reveals two distinct classes of Erythroblastic Island isolated from adult mammalian bone marrow. Microsc Microanal 22:368–378.  https://doi.org/10.1017/S1431927616000155 CrossRefPubMedGoogle Scholar
  205. Yeo JH, Colonne CK, Tasneem N, Cosgriff MP, Fraser ST (2019) The iron islands: Erythroblastic islands and iron metabolism. Biochim Biophys Acta Gen Subj 1863(2):466–471.  https://doi.org/10.1016/j.bbagen.2018.10.019 CrossRefPubMedGoogle Scholar
  206. Yoshida H, Okabe Y, Kawane K, et al (2005) Lethal anemia caused by interferon-β produced in mouse embryos carrying undigested DNA. Nat Immunol 2004 6:1 6:49–56. doi:  https://doi.org/10.1038/ni1146
  207. Yu Y, Mo Y, Ebenezer D et al (2013) High resolution methylome analysis reveals widespread functional hypomethylation during adult human erythropoiesis. J Biol Chem 288:8805–8814.  https://doi.org/10.1074/jbc.M112.423756 CrossRefPubMedPubMedCentralGoogle Scholar
  208. Zarychanski R, Schulz VP, Houston BL et al (2012) Mutations in the mechanotransduction protein PIEZO1 are associated with hereditary xerocytosis. Blood 120:1908–1915.  https://doi.org/10.1182/blood-2012-04-422253 CrossRefPubMedPubMedCentralGoogle Scholar
  209. Zatsepina OV, Chelidze PV, Chentsov YS (1988) Changes in the number and volume of fibrillar centres with the inactivation of nucleoli at erythropoiesis. J Cell Sci 91(Pt 3):439–448PubMedGoogle Scholar
  210. Zhang J, Kundu M, Ney PA (2009a) Chapter 15 mitophagy in mammalian cells: the reticulocyte model. Methods Enzymol 452:227–245.  https://doi.org/10.1016/S0076-6879(08)03615-X CrossRefPubMedGoogle Scholar
  211. Zhang J, Randall MS, Loyd MR et al (2009b) Mitochondrial clearance is regulated by Atg7-dependent and -independent mechanisms during reticulocyte maturation. Blood 114:157–164.  https://doi.org/10.1182/blood-2008-04-151639 CrossRefPubMedPubMedCentralGoogle Scholar
  212. Zhang L, Flygare J, Wong P et al (2011) miR-191 regulates mouse erythroblast enucleation by down-regulating Riok3 and Mxi1. Genes Dev 25:119–124.  https://doi.org/10.1101/gad.1998711 CrossRefPubMedPubMedCentralGoogle Scholar
  213. Zhang R, Erler J, Langowski J (2017) Histone acetylation regulates chromatin accessibility: role of H4K16 in inter-nucleosome interaction. Biophys J 112:450–459.  https://doi.org/10.1016/j.bpj.2016.11.015 CrossRefPubMedGoogle Scholar
  214. Zhao B, Schipma MJ, Mei Y et al (2014) Nuclear condensation during mouse erythropoiesis requires Caspase-3 mediated nuclear opening formation. Blood 124:448–448Google Scholar
  215. Zhao B, Mei Y, Schipma MJ et al (2016) Nuclear condensation during mouse erythropoiesis requires Caspase-3-mediated nuclear opening. Dev Cell 36:498–510.  https://doi.org/10.1016/j.devcel.2016.02.001 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Discipline of Anatomy and Histology, School of Medical SciencesUniversity of SydneySydneyAustralia
  2. 2.School of ChemistryUniversity of SydneySydneyAustralia
  3. 3.Discipline of Physiology, School of Medical SciencesUniversity of SydneySydneyAustralia
  4. 4.Department of ChemistryCity University of Hong KongKowloon TongHong Kong
  5. 5.Bosch Institute, School of Medical SciencesUniversity of SydneySydneyAustralia
  6. 6.University of Sydney Nano InstituteSydneyAustralia

Personalised recommendations