Biophysical Reviews

, Volume 11, Issue 3, pp 389–393 | Cite as

G-quadruplex structures formed by human telomeric DNA and C9orf72 hexanucleotide repeats

  • Changdong Liu
  • Yanyan Geng
  • Haitao Miao
  • Xiao Shi
  • Yingying You
  • Naining Xu
  • Bo Zhou
  • Guang ZhuEmail author

DNA or RNA strands that are composed stretches of guanines (G-tracts) divided by other bases are able to form G-quadruplexes, a tetra-helical structure with stacked G-tetrad planes connected by Hoogsteen hydrogen bonds and stabilized by cations such as Na+ and K+ (Largy et al. 2016; Neidle et al. 2006; Neidle and Parkinson 2003). Inter- or intramolecular G-quadruplex structures are polymorphic and can form parallel or antiparallel structures based on the orientation of the strands in a G-quadruplex. G-quadruplexes have been revealed in human cells using an antibody and small molecules (Biffi et al. 2013; Hansel-Hertsch et al. 2017; Henderson et al. 2014) and shown to play important roles in numerous processes such as DNA replication, recombination, transcription, translation, and telomere maintenance (Blackburn 2001; Cahoon and Seifert 2009; de Lange 2002; Jiang et al. 2018; Kumari et al. 2007; Lei et al. 2004; Lopes et al. 2011; Paeschke et al. 2011; Siddiqui-Jain et al. 2002). In...


Conflict of interest

Changdong Liu declares that he has no conflict of interest. Yanyan Geng declares that she has no conflict of interest. Haitao Miao declares that he has no conflict of interest. Xiao Shi declares that he has no conflict of interest. Yingying You declares that she has no conflict of interest. Naining Xu declares that she has no conflict of interest. Bo Zhou declares that he has no conflict of interest. Guang Zhu declares that he has no conflict of interest.


  1. Ambrus A, Chen D, Dai J, Bialis T, Jones RA, Yang D (2006) Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res 34:2723–2735. CrossRefGoogle Scholar
  2. Aznauryan M, Sondergaard S, Noer SL, Schiott B, Birkedal V (2016) A direct view of the complex multi-pathway folding of telomeric G-quadruplexes. Nucleic Acids Res 44:11024–11032. CrossRefGoogle Scholar
  3. Biffi G, Tannahill D, McCafferty J, Balasubramanian S (2013) Quantitative visualization of DNA G-quadruplex structures in human cells. Nat Chem 5:182–186. CrossRefGoogle Scholar
  4. Blackburn EH (2001) Switching and signaling at the telomere. Cell 106:661–673.
  5. Brcic J, Plavec J (2015) Solution structure of a DNA quadruplex containing ALS and FTD related GGGGCC repeat stabilized by 8-bromodeoxyguanosine substitution. Nucleic Acids Res 43:8590–8600. CrossRefGoogle Scholar
  6. Brcic J, Plavec J (2018) NMR structure of a G-quadruplex formed by four d(G4C2) repeats: insights into structural polymorphism. Nucleic Acids Res 46:11605–11617. Google Scholar
  7. Cahoon LA, Seifert HS (2009) An alternative DNA structure is necessary for pilin antigenic variation in Neisseria gonorrhoeae. Science 325:764–767. CrossRefGoogle Scholar
  8. Cammas A, Millevoi S (2017) RNA G-quadruplexes: emerging mechanisms in disease. Nucleic Acids Res 45:1584–1595Google Scholar
  9. Campbell NH, Parkinson GN, Reszka AP, Neidle S (2008) Structural basis of DNA quadruplex recognition by an acridine drug. J Am Chem Soc 130:6722–6724. CrossRefGoogle Scholar
  10. Dai JX, Carver M, Punchihewa C, Jones RA, Yang DZ (2007a) Structure of the Hybrid-2 type intramolecular human telomeric G-quadruplex in K+ solution: insights into structure polymorphism of the human telomeric sequence. Nucleic Acids Res 35:4927–4940. CrossRefGoogle Scholar
  11. Dai JX, Punchihewa C, Ambrus A, Chen D, Jones RA, Yang DZ (2007b) Structure of the intramolecular human telomeric G-quadruplex in potassium solution: a novel adenine triple formation. Nucleic Acids Res 35:2440–2450. CrossRefGoogle Scholar
  12. de Lange T (2002) Protection of mammalian telomeres. Oncogene 21:532–540. CrossRefGoogle Scholar
  13. DeJesus-Hernandez M et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256. CrossRefGoogle Scholar
  14. Fratta P, Mizielinska S, Nicoll AJ, Zloh M, Fisher EMC, Parkinson G, Isaacs AM (2012) C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes. Sci Rep 2Google Scholar
  15. Geng Y et al (2019) The crystal structure of an antiparallel chair-type G-quadruplex formed by Bromo-substituted human telomeric. DNA Nucleic Acids Res.
  16. Gray RD, Trent JO, Chaires JB (2014) Folding and unfolding pathways of the human telomeric G-quadruplex. J Mol Biol 426:1629–1650. CrossRefGoogle Scholar
  17. Haeusler AR et al (2014) C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature 507:195CrossRefGoogle Scholar
  18. Hansel-Hertsch R, Di Antonio M, Balasubramanian S (2017) DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat Rev Mol Cell Biol 18:279–284. CrossRefGoogle Scholar
  19. Henderson A et al (2014) Detection of G-quadruplex DNA in mammalian cells. Nucleic Acids Res 42:860–869. CrossRefGoogle Scholar
  20. Hou XM et al (2017) Involvement of G-triplex and G-hairpin in the multi-pathway folding of human telomeric G-quadruplex. Nucleic Acids Res 45:11401–11412. CrossRefGoogle Scholar
  21. Jiang J, Wang Y, Susac L, Chan H, Basu R, Zhou ZH, Feigon J (2018) Structure of telomerase with telomeric DNA cell 173:1179-1190 e1113 doi:
  22. Kumar V, Kashav T, Islam A, Ahmad F, Hassan MI (2016) Structural insight into C9orf72 hexanucleotide repeat expansions: towards new therapeutic targets in FTD-ALS. Neurochem Int 100:11–20CrossRefGoogle Scholar
  23. Kumari S, Bugaut A, Huppert JL, Balasubramanian S (2007) An RNA G-quadruplex in the 5 ' UTR of the NRAS proto-oncogene modulates translation. Nat Chem Biol 3:218–221. CrossRefGoogle Scholar
  24. Largy E, Mergny JL, Gabelica V (2016) Role of alkali metal ions in G-quadruplex nucleic acid structure and stability. Met Ions Life Sci 16:203–258. CrossRefGoogle Scholar
  25. Lei M, Podell ER, Cech TR (2004) Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nat Struct Mol Biol 11:1223–1229. CrossRefGoogle Scholar
  26. Lillo P, Hodges JR (2009) Frontotemporal dementia and motor neurone disease: overlapping clinic-pathological disorders. Journal of Clinical Neuroscience 16:1131–1135. CrossRefGoogle Scholar
  27. Lim KW et al (2009) Structure of the human telomere in K+ solution: a stable basket-type G-quadruplex with only two G-tetrad layers. J Am Chem Soc 131:4301–4309. CrossRefGoogle Scholar
  28. Lim KW, Ng VCM, Martin-Pintado N, Heddi B, Phan AT (2013) Structure of the human telomere in Na+ solution: an antiparallel (2+2) G-quadruplex scaffold reveals additional diversity. Nucleic Acids Res 41:10556–10562. CrossRefGoogle Scholar
  29. Liu C et al (2019) A chair-type G-quadruplex structure formed by a human telomeric variant DNA in K(+) solution. Chem Sci 10:218–226. CrossRefGoogle Scholar
  30. Lopes J et al (2011) G-quadruplex-induced instability during leading-strand replication. EMBO J 30:4033–4046. CrossRefGoogle Scholar
  31. Majounie E et al (2012) Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol 11:323–330CrossRefGoogle Scholar
  32. Mashimo T, Yagi H, Sannohe Y, Rajendran A, Sugiyama H (2010) Folding pathways of human telomeric type-1 and type-2 G-quadruplex structures. J Am Chem Soc 132:14910–14918. CrossRefGoogle Scholar
  33. Metifiot M, Amrane S, Litvak S, Andreola ML (2014) G-quadruplexes in viruses: function and potential therapeutic applications. Nucleic Acids Res 42:12352–12366. CrossRefGoogle Scholar
  34. Neidle S (2012) Therapeutic applications of quadruplex nucleic acids. 1st edn. Elsevier/Academic Press, London ; Waltham, MAGoogle Scholar
  35. Neidle S, Balasubramanian S, Harrell WA (2006) Quadruplex nucleic acids. RSC PubGoogle Scholar
  36. Neidle S, Parkinson GN (2003) The structure of telomeric DNA. Curr Opin Struct Biol 13:275–283CrossRefGoogle Scholar
  37. Paeschke K, Capra JA, Zakian VA (2011) DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell 145:678–691. CrossRefGoogle Scholar
  38. Parkinson GN, Lee MPH, Neidle S (2002) Crystal structure of parallel quadruplexes from human telomeric. DNA Nature 417:876–880. CrossRefGoogle Scholar
  39. Phan AT, Kuryavyi V, Luu KN, Patel DJ (2007) Structure of two intramolecular G-quadruplexes formed by natural human telomere sequences in K+ solution. Nucleic Acids Res 35:6517–6525. CrossRefGoogle Scholar
  40. Rademakers R, Neumann M, Mackenzie IR (2012) Advances in understanding the molecular basis of frontotemporal dementia. Nat Rev Neurol 8:423–434. CrossRefGoogle Scholar
  41. Raffa RB, Pergolizzi JV, Jr, Taylor R, Jr, Ossipov MH, Group NR (2018) Discovery of “folded DNA” structures in human cells: potential drug targets Journal of clinical pharmacy and therapeutics doi:
  42. Reddy K, Zamiri B, Stanley SYR, Macgregor RB, Pearson CE (2013) The disease-associated r(GGGGCC)(n) repeat from the C9orf72 gene forms tract length-dependent uni- and multimolecular RNA G-quadruplex structures. J Biol Chem 288:9860–9866CrossRefGoogle Scholar
  43. Renton AE et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268. CrossRefGoogle Scholar
  44. Rowland LP, Shneider NA (2001) Amyotrophic lateral sclerosis. N Engl J Med 344:1688–1700. CrossRefGoogle Scholar
  45. Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH (2002) Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci U S A 99:11593–11598. CrossRefGoogle Scholar
  46. Simone R, Fratta P, Neidle S, Parkinson GN, Isaacs AM (2015) G-quadruplexes: emerging roles in neurodegenerative diseases and the non-coding transcriptome. FEBS Lett 589:1653–1668. CrossRefGoogle Scholar
  47. Sket P et al (2015) Characterization of DNA G-quadruplex species forming from C9ORF72 G4C2-expanded repeats associated with amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Neurobiol Aging 36:1091–1096. CrossRefGoogle Scholar
  48. Wang Y, Patel DJ (1993) Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure 1:263–282CrossRefGoogle Scholar
  49. Zamiri B, Mirceta M, Bomsztyk K, Macgregor RB, Pearson CE (2015) Quadruplex formation by both G-rich and C-rich DNA strands of the C9orf72(GGGGCC)8 center dot(GGCCCC)8 repeat: effect of CpG methylation Nucleic Acids Res 43:10055-+
  50. Zhang ZJ, Dai JX, Veliath E, Jones RA, Yang DZ (2010) Structure of a two-G-tetrad intramolecular G-quadruplex formed by a variant human telomeric sequence in K+ solution: insights into the interconversion of human telomeric G-quadruplex structures. Nucleic Acids Res 38:1009–1021. CrossRefGoogle Scholar
  51. Zhou B et al. (2018) Characterizations of distinct parallel and antiparallel G-quadruplexes formed by two-repeat ALS and FTD related GGGGCC sequence Scientific reports 8 doi:Artn 2366
  52. Zhou B, Liu C, Geng Y, Zhu G (2015) Topology of a G-quadruplex DNA formed by C9orf72 hexanucleotide repeats associated with ALS and FTD. Sci Rep 5:16673. CrossRefGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Changdong Liu
    • 1
  • Yanyan Geng
    • 1
  • Haitao Miao
    • 1
  • Xiao Shi
    • 1
  • Yingying You
    • 1
  • Naining Xu
    • 1
  • Bo Zhou
    • 1
  • Guang Zhu
    • 1
    Email author
  1. 1.Division of Life ScienceThe Hong Kong University of Science and TechnologyHong KongChina

Personalised recommendations