Biophysical Reviews

, Volume 11, Issue 3, pp 319–325 | Cite as

Single-molecule in vitro reconstitution assay for kinesin-1-driven membrane dynamics

  • Wanqing Du
  • Qian Peter SuEmail author


Intracellular membrane dynamics, especially the nano-tube formation, plays important roles in vesicle transportation and organelle biogenesis. Regarding the regulation mechanisms, it is well known that during the nano-tube formation, motor proteins act as the driven force moving along the cytoskeleton, lipid composition and its associated proteins serve as the linkers and key mediators, and the vesicle sizes play as one of the important regulators. In this review, we summarized the in vitro reconstitution assay method, which has been applied to reconstitute the nano-tube dynamics during autophagic lysosomal regeneration (ALR) and the morphology dynamics during mitochondria network formation (MNF) in a mimic and pure in vitro system. Combined with the single-molecule microscopy, the advantage of the in vitro reconstitution system is to study the key questions at a single-molecule or single-vesicle level with precisely tuned parameters and conditions, such as the motor mutation, ion concentration, lipid component, ATP/GTP concentration, and even in vitro protein knockout, which cannot easily be achieved by in vivo or intracellular studies.


Single-molecule microscopy In vitro reconstitution assay Autophagic lysosome reformation (ALR) Mitochondrial network formation (MNF) 



This work was supported by the University of Technology Sydney’s Grant for IBMD (Q.P.S.).

Author contribution

W.D. and Q.P.S. contributed equally, prepared figures, and wrote and edited the manuscript together.

Compliance with ethical standards

Conflict of interest

Wanqing Du declares that he has no conflict of interest. Qian Peter Su declares that he has no conflict of interest.


  1. Allan V, Vale R (1994) Movement of membrane tubules along microtubules in vitro: evidence for specialised sites of motor attachment. J Cell Sci 107 ( Pt 7:1885–1897Google Scholar
  2. Chan DC (2012) Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet 46:265–287CrossRefGoogle Scholar
  3. Chen C, Wang F, Wen S, Su QP, Wu MCL, Liu Y, Wang B, Li D, Shan X, Kianinia M et al (2018a) Multi-photon near-infrared emission saturation nanoscopy using upconversion nanoparticles. Nat Commun 9:3290CrossRefGoogle Scholar
  4. Chen H, Chan DC (2009) Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases. Hum Mol Genet 18:R169–R176CrossRefGoogle Scholar
  5. Chen Y, Su QP, Sun Y, Yu L (2018b) Visualizing autophagic lysosome reformation in cells using in vitro reconstitution systems. Curr Protoc Cell Biol 78:11.24.11–11.24.15CrossRefGoogle Scholar
  6. Chen Y, Su QP, Yu L (2019) Studying autophagic lysosome reformation in cells and by an in vitro reconstitution system. Methods Mol Biol 1880:163–172CrossRefGoogle Scholar
  7. Choudhuri K, Llodra J, Roth EW, Tsai J, Gordo S, Wucherpfennig KW, Kam LC, Stokes DL, Dustin ML (2014) Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse. Nature 507:118–123CrossRefGoogle Scholar
  8. Dabora SL, Sheetz MP (1988) The microtubule-dependent formation of a tubulovesicular network with characteristics of the ER from cultured cell extracts. Cell 54:27–35CrossRefGoogle Scholar
  9. Du W, Su QP, Chen Y, Zhu Y, Jiang D, Rong Y, Zhang S, Zhang Y, Ren H, Zhang C et al (2016) Kinesin 1 drives autolysosome tubulation. Dev Cell 37:326–336CrossRefGoogle Scholar
  10. Guan R, Zhang L, Su QP, Mickolajczyk KJ, Chen GY, Hancock WO, Sun Y, Zhao Y, Chen Z (2017) Crystal structure of Zen4 in the apo state reveals a missing conformation of kinesin. Nat Commun 8:14951CrossRefGoogle Scholar
  11. Hirokawa N, Takemura R (2005) Molecular motors and mechanisms of directional transport in neurons. Nat Rev Neurosci 6:201–214CrossRefGoogle Scholar
  12. Horbay R, Bilyy R (2016) Mitochondrial dynamics during cell cycling. Apoptosis 21:1327–1335CrossRefGoogle Scholar
  13. Kanfer G, Kornmann B (2016) Dynamics of the mitochondrial network during mitosis. Biochem Soc Trans 44:510–516CrossRefGoogle Scholar
  14. Kee AJ, Bryce NS, Yang L, Polishchuk E, Schevzov G, Weigert R, Polishchuk R, Gunning PW, Hardeman EC (2017) ER/Golgi trafficking is facilitated by unbranched actin filaments containing Tpm4.2. Cytoskeleton (Hoboken, NJ) 74:379–389CrossRefGoogle Scholar
  15. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD, Adeli K et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1–222CrossRefGoogle Scholar
  16. Klopfenstein DR, Tomishige M, Stuurman N, Vale RD (2002) Role of phosphatidylinositol(4,5)bisphosphate organization in membrane transport by the Unc104 kinesin motor. Cell 109:347–358CrossRefGoogle Scholar
  17. Liu Z, Xing D, Su QP, Zhu Y, Zhang J, Kong X, Xue B, Wang S, Sun H, Tao Y et al (2014) Super-resolution imaging and tracking of protein-protein interactions in sub-diffraction cellular space. Nat Commun 5:4443CrossRefGoogle Scholar
  18. Lucanus AJ, Yip GW (2018) Kinesin superfamily: roles in breast cancer, patient prognosis and therapeutics. Oncogene 37:833–838CrossRefGoogle Scholar
  19. McArthur K, Whitehead LW, Heddleston JM, Li L, Padman BS, Oorschot V, Geoghegan ND et al (2018) BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359(6378):eaao6047Google Scholar
  20. Mi N, Chen Y, Wang S, Chen M, Zhao M, Yang G, Ma M, Su Q, Luo S, Shi J et al (2015) CapZ regulates autophagosomal membrane shaping by promoting actin assembly inside the isolation membrane. Nat Cell Biol 17:1112–1123CrossRefGoogle Scholar
  21. Pilling AD, Horiuchi D, Lively CM, Saxton WM (2006) Kinesin-1 and dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol Biol Cell 17:2057–2068CrossRefGoogle Scholar
  22. Rong Y, Liu M, Ma L, Du W, Zhang H, Tian Y, Cao Z, Li Y, Ren H, Zhang C et al (2012) Clathrin and phosphatidylinositol-4,5-bisphosphate regulate autophagic lysosome reformation. Nat Cell Biol 14:924–934CrossRefGoogle Scholar
  23. Roux A, Cappello G, Cartaud J, Prost J, Goud B, Bassereau P (2002) A minimal system allowing tubulation with molecular motors pulling on giant liposomes. Proc Natl Acad Sci U S A 99:5394–5399CrossRefGoogle Scholar
  24. Ruan H, Yu J, Yuan J, Li N, Fang X (2016) Nanoscale distribution of transforming growth factor receptor on post-Golgi vesicle revealed by super-resolution microscopy. Chem Asian J 11:3359–3364CrossRefGoogle Scholar
  25. Sahl SJ, Hell SW, Jakobs S (2017) Fluorescence nanoscopy in cell biology. Nat Rev Mol Cell Biol 18:685CrossRefGoogle Scholar
  26. Shen M, Zhang N, Zheng S, Zhang WB, Zhang HM, Lu Z, Su QP, Sun Y, Ye K, Li XD (2016) Calmodulin in complex with the first IQ motif of myosin-5a functions as an intact calcium sensor. Proc Natl Acad Sci U S A 113:E5812–e5820CrossRefGoogle Scholar
  27. Su QP, Du W, Ji Q, Xue B, Jiang D, Zhu Y, Lou J, Yu L, Sun Y (2016) Vesicle size regulates nanotube formation in the cell. Sci Rep 6:24002CrossRefGoogle Scholar
  28. Su QP, Ju LA (2018) Biophysical nanotools for single-molecule dynamics. Biophys Rev 10(5):1349–1357Google Scholar
  29. Sun Y, Schroeder HW 3rd, Beausang JF, Homma K, Ikebe M, Goldman YE (2007) Myosin VI walks “wiggly” on actin with large and variable tilting. Mol Cell 28:954–964CrossRefGoogle Scholar
  30. Tanaka Y, Kanai Y, Okada Y, Nonaka S, Takeda S, Harada A, Hirokawa N (1998) Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93:1147–1158CrossRefGoogle Scholar
  31. Vale RD (2003) The molecular motor toolbox for intracellular transport. Cell 112:467–480CrossRefGoogle Scholar
  32. Vale RD, Hotani H (1988) Formation of membrane networks in vitro by kinesin-driven microtubule movement. J Cell Biol 107:2233–2241CrossRefGoogle Scholar
  33. Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42:39–50CrossRefGoogle Scholar
  34. Valm AM, Cohen S, Legant WR, Melunis J, Hershberg U, Wait E, Cohen AR, Davidson MW, Betzig E, Lippincott-Schwartz J (2017) Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546:162–167CrossRefGoogle Scholar
  35. Vincent AE, Turnbull DM, Eisner V, Hajnoczky G, Picard M (2017) Mitochondrial nanotunnels. Trends Cell Biol 27:787–799CrossRefGoogle Scholar
  36. Wang C, Du W, Su QP, Zhu M, Feng P, Li Y, Zhou Y, Mi N, Zhu Y, Jiang D et al (2015) Dynamic tubulation of mitochondria drives mitochondrial network formation. Cell Res 25:1108–1120CrossRefGoogle Scholar
  37. Waterman-Storer CM, Karki SB, Kuznetsov SA, Tabb JS, Weiss DG, Langford GM, Holzbaur EL (1997) The interaction between cytoplasmic dynein and dynactin is required for fast axonal transport. Proc Natl Acad Sci U S A 94:12180–12185CrossRefGoogle Scholar
  38. Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300:2061–2065CrossRefGoogle Scholar
  39. Yu L, McPhee CK, Zheng L, Mardones GA, Rong Y, Peng J, Mi N, Zhao Y, Liu Z, Wan F et al (2010) Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465:942–946CrossRefGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life SciencesTsinghua UniversityBeijingChina
  2. 2.Institute for Biomedical Materials & Devices (IBMD), Faculty of ScienceUniversity of Technology SydneyUltimoAustralia

Personalised recommendations