Biophysical Reviews

, Volume 10, Issue 6, pp 1617–1629 | Cite as

S100 proteins as therapeutic targets

  • Anne R. BresnickEmail author


The human genome codes for 21 S100 protein family members, which exhibit cell- and tissue-specific expression patterns. Despite sharing a high degree of sequence and structural similarity, the S100 proteins bind a diverse range of protein targets and contribute to a broad array of intracellular and extracellular functions. Consequently, the S100 proteins regulate multiple cellular processes such as proliferation, migration and/or invasion, and differentiation, and play important roles in a variety of cancers, autoimmune diseases, and chronic inflammatory disorders. This review focuses on the development of S100 neutralizing antibodies and small molecule inhibitors and their potential therapeutic use in controlling disease progression and severity.


S100 protein Calcium binding Small molecule inhibitor Neutralizing antibody 



We thank Drs. SC Almo and JM Backer (Albert Einstein College of Medicine) for helpful discussions and for reading the manuscript. This work was supported by National Institutes of Health grants P01 CA100324 and R01 GM119279.

Compliance with ethical standards

Conflict of interest

Anne R. Bresnick declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.


  1. Acharyya S et al (2012) A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 150:165–178. PubMedCentralCrossRefPubMedGoogle Scholar
  2. Agamennone M et al (2010) Fragmenting the S100B-p53 interaction: combined virtual/biophysical screening approaches to identify ligands. ChemMedChem 5:428–435. CrossRefGoogle Scholar
  3. Ambartsumian NS et al (1996) Metastasis of mammary carcinomas in GRS/A hybrid mice transgenic for the mts1 gene. Oncogene 13:1621–1630Google Scholar
  4. Amin AR, Islam AB (2014) Genomic analysis and differential expression of HMG and S100A family in human arthritis: upregulated expression of chemokines, IL-8 and nitric oxide by HMGB1 DNA. Cell Biol 33:550–565. CrossRefGoogle Scholar
  5. Amor-Mahjoub M, Suppini JP, Gomez-Vrielyunck N, Ladjimi M (2006) The effect of the hexahistidine-tag in the oligomerization of HSC70 constructs. J Chromatogr B Anal Technol Biomed Life Sci 844:328–334. CrossRefGoogle Scholar
  6. Arumugam T, Ramachandran V, Maxwell D, Bornmann WG, Logsdon CD (2013) Designing and developing S100P inhibitor 5-methyl cromolyn (C5OH) for pancreatic cancer therapy. Mol Cancer Ther 12:654–662. PubMedCentralCrossRefPubMedGoogle Scholar
  7. Austermann J, Spiekermann C, Roth J (2018) S100 proteins in rheumatic diseases. Nat Rev Rheumatol 14:528–541. CrossRefGoogle Scholar
  8. Bajor M, Zareba-Koziol M, Zhukova L, Goryca K, Poznanski J, Wyslouch-Cieszynska A (2016) An interplay of S-nitrosylation and metal ion binding for astrocytic S100B. Protein PloS one 11:e0154822. CrossRefGoogle Scholar
  9. Becker A et al (2015) Optical in vivo imaging of the alarmin S100A9 in tumor lesions allows for estimation of the individual malignant potential by evaluation of tumor-host cell interaction. J Nucl Med 56:450–456. CrossRefGoogle Scholar
  10. Bettum IJ et al (2014) Metastasis-associated protein S100A4 induces a network of inflammatory cytokines that activate stromal cells to acquire pro-tumorigenic properties. Cancer Lett 344:28–39. CrossRefGoogle Scholar
  11. Beyett TS et al (2018) Carboxylic acid derivatives of amlexanox display enhanced potency toward TBK1 and IKKepsilon and reveal mechanisms for selective inhibition. Mol Pharmacol 94:1210–1219. CrossRefGoogle Scholar
  12. Bhattacharya S, Large E, Heizmann CW, Hemmings B, Chazin WJ (2003) Structure of the Ca2+/S100B/NDR kinase peptide complex: insights into S100 target specificity and activation of the kinase. Biochemistry 42:14416–14426CrossRefGoogle Scholar
  13. Bjork P et al (2009) Identification of human S100A9 as a novel target for treatment of autoimmune disease via binding to quinoline-3-carboxamides. PLoS Biol 7:e97. CrossRefGoogle Scholar
  14. Bjork P et al (2013) Common interactions between S100A4 and S100A9 defined by a novel chemical probe. PLoS One 8:e63012. PubMedCentralCrossRefPubMedGoogle Scholar
  15. Brem B et al. (2017) Novel thiazolo[5,4-b]phenothiazine derivatives: synthesis, structural characterization, and in vitro evaluation of antiproliferative activity against human leukaemia. Int J Mol Sci 18 doi:
  16. Bresnick AR, Weber DJ, Zimmer DB (2015) S100 proteins in cancer nature reviews. Cancer 15:96–109. CrossRefGoogle Scholar
  17. Brini M, Ottolini D, Cali T, Carafoli E (2013) Calcium in health and disease. Met Ions Life Sci 13:81–137. CrossRefGoogle Scholar
  18. Brisson M et al (2005) Redox regulation of Cdc25B by cell-active quinolinediones. Mol Pharmacol 68:1810–1820. CrossRefGoogle Scholar
  19. Brufsky A (2010) Trastuzumab-based therapy for patients with HER2-positive breast cancer: from early scientific development to foundation of care. Am J Clin Oncol 33:186–195. CrossRefGoogle Scholar
  20. Bruhn S et al (2014) A generally applicable translational strategy identifies S100A4 as a candidate gene in allergy. Sci Transl Med 6:218ra214. CrossRefGoogle Scholar
  21. Burock S, Daum S, Keilholz U, Neumann K, Walther W, Stein U (2018) Phase II trial to investigate the safety and efficacy of orally applied niclosamide in patients with metachronous or sychronous metastases of a colorectal cancer progressing after therapy: the NIKOLO tria. BMC Cancer 18:297. PubMedCentralCrossRefPubMedGoogle Scholar
  22. Cavalier MC et al (2014) Covalent small molecule inhibitors of ca(2+)-bound S100B. Biochemistry 53:6628–6640. PubMedCentralCrossRefPubMedGoogle Scholar
  23. Cecil DL, Terkeltaub R (2008) Transamidation by transglutaminase 2 transforms S100A11 calgranulin into a procatabolic cytokine for chondrocytes. J Immunol 180:8378–8385PubMedCentralCrossRefGoogle Scholar
  24. Cerezo LA et al (2014) The metastasis-associated protein S100A4 promotes the inflammatory response of mononuclear cells via the TLR4 signalling pathway in rheumatoid arthritis. Rheumatology (Oxford) 53:1520–1526. CrossRefGoogle Scholar
  25. Cerofolini L, Amato J, Borsi V, Pagano B, Randazzo A, Fragai M (2015) Probing the interaction of distamycin A with S100beta: the “unexpected” ability of S100beta to bind to DNA-binding ligands. J Mol Recognit 28:376–384. CrossRefGoogle Scholar
  26. Cesaro A, Anceriz N, Plante A, Page N, Tardif MR, Tessier PA (2012) An inflammation loop orchestrated by S100A9 and calprotectin is critical for development of arthritis. PLoS One 7:e45478. PubMedCentralCrossRefPubMedGoogle Scholar
  27. Charpentier TH et al (2008) Divalent metal ion complexes of S100B in the absence and presence of pentamidine. J Mol Biol 382:56–73. PubMedCentralCrossRefPubMedGoogle Scholar
  28. Chen L et al (2015) S100A4 promotes liver fibrosis via activation of hepatic stellate cells. J Hepatol 62:156–164. CrossRefGoogle Scholar
  29. Cheng P et al (2008) Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 205:2235–2249. PubMedCentralCrossRefPubMedGoogle Scholar
  30. Cook WJ, Walter LJ, Walter MR (1994) Drug binding by calmodulin: crystal structure of a calmodulin-trifluoperazine complex. Biochemistry 33:15259–15265CrossRefGoogle Scholar
  31. Cunden LS, Brophy MB, Rodriguez GE, Flaxman HA, Nolan EM (2017) Biochemical and functional evaluation of the intramolecular disulfide bonds in the zinc-chelating antimicrobial protein human S100A7 (Psoriasin). Biochemistry 56:5726–5738. PubMedCentralCrossRefPubMedGoogle Scholar
  32. Cunningham MF, Docherty NG, Burke JP, O'Connell PR (2010) S100A4 expression is increased in stricture fibroblasts from patients with fibrostenosing Crohn’s disease and promotes intestinal fibroblast migration. Am J Physiol Gastrointest Liver Physiol 299:G457–G466. CrossRefPubMedGoogle Scholar
  33. Dahlmann M, Kobelt D, Walther W, Mudduluru G, Stein U (2016) S100A4 in cancer metastasis: Wnt signaling-driven interventions for metastasis restriction cancers (Basel) 8 doi:
  34. Dakhel S et al (2014) S100P antibody-mediated therapy as a new promising strategy for the treatment of pancreatic cancer. Oncogenesis 3:e92. PubMedCentralCrossRefPubMedGoogle Scholar
  35. Davies BR, Davies MP, Gibbs FE, Barraclough R, Rudland PS (1993) Induction of the metastatic phenotype by transfection of a benign rat mammary epithelial cell line with the gene for p9Ka, a rat calcium-binding protein, but not with the oncogene EJ-ras-1. Oncogene 8:999–1008PubMedGoogle Scholar
  36. Davies MP, Rudland PS, Robertson L, Parry EW, Jolicoeur P, Barraclough R (1996) Expression of the calcium-binding protein S100A4 (p9Ka) in MMTV-neu transgenic mice induces metastasis of mammary tumours. Oncogene 13:1631–1637PubMedGoogle Scholar
  37. Dempsey BR, Rezvanpour A, Lee TW, Barber KR, Junop MS, Shaw GS (2012) Structure of an asymmetric ternary protein complex provides insight for membrane interaction. Structure 20:1737–1745. CrossRefPubMedGoogle Scholar
  38. Dmytriyeva O et al (2012) The metastasis-promoting S100A4 protein confers neuroprotection in brain injury. Nat Commun 3:1197. CrossRefPubMedGoogle Scholar
  39. Donato R (2003) Intracellular and extracellular roles of S100 proteins. Microsc Res Tech 60:540–551. CrossRefPubMedGoogle Scholar
  40. Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ, Geczy CL (2013) Functions of S100 proteins. Curr Mol Med 13:24–57PubMedCentralCrossRefGoogle Scholar
  41. Dulyaninova NG, Bresnick AR (2013) The heavy chain has its day: regulation of myosin-II assembly. Bioarchitecture 3:77–85PubMedCentralCrossRefGoogle Scholar
  42. Dulyaninova NG, Hite KM, Zencheck WD, Scudiero DA, Almo SC, Shoemaker RH, Bresnick AR (2011) Cysteine 81 is critical for the interaction of S100A4 and myosin-IIA. Biochemistry 50:7218–7227. PubMedCentralCrossRefPubMedGoogle Scholar
  43. Ehrchen JM, Sunderkotter C, Foell D, Vogl T, Roth J (2009) The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J Leukoc Biol 86:557–566. CrossRefGoogle Scholar
  44. Eisenblaetter M et al (2017) Visualization of tumor-immune interaction - target-specific imaging of S100A8/A9 reveals pre-metastatic niche establishment. Theranostics 7:2392–2401. PubMedCentralCrossRefPubMedGoogle Scholar
  45. Erlandsson MC et al (2013) Expression of metastasin S100A4 is essential for bone resorption and regulates osteoclast function. Biochim Biophys Acta 1833:2653–2663. CrossRefPubMedGoogle Scholar
  46. Escudier B et al (2017) A phase II multicentre, open-label, proof-of-concept study of tasquinimod in hepatocellular, ovarian, renal cell, and gastric cancers. Target Oncol 12:655–661. CrossRefPubMedGoogle Scholar
  47. Feldkamp MD, Gakhar L, Pandey N, Shea MA (2015) Opposing orientations of the anti-psychotic drug trifluoperazine selected by alternate conformations of M144 in calmodulin. Proteins 83:989–996. PubMedCentralCrossRefPubMedGoogle Scholar
  48. Fizazi K et al (2017) A randomized, double-blind, placebo-controlled phase II study of maintenance therapy with tasquinimod in patients with metastatic castration-resistant prostate cancer responsive to or stabilized during first-line docetaxel chemotherapy. Ann Oncol 28:2741–2746. PubMedCentralCrossRefPubMedGoogle Scholar
  49. Foell D et al (2013) Proinflammatory S100A12 can activate human monocytes via Toll-like receptor 4. Am J Respir Crit Care Med 187:1324–1334. CrossRefPubMedGoogle Scholar
  50. Foell D, Wittkowski H, Vogl T, Roth J (2007) S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules. J Leukoc Biol 81:28–37. CrossRefGoogle Scholar
  51. Forst B et al (2010) Metastasis-inducing S100A4 and RANTES cooperate in promoting tumor progression in mice. PLoS One 5:e10374. PubMedCentralCrossRefPubMedGoogle Scholar
  52. Fransen Pettersson N et al (2018) The immunomodulatory quinoline-3-carboxamide paquinimod reverses established fibrosis in a novel mouse model for liver fibrosis. PLoS One 13:e0203228. PubMedCentralCrossRefPubMedGoogle Scholar
  53. Gao H et al. (2018) S100B suppression alters polarization of infiltrating myeloid-derived cells in gliomas and inhibits tumor growth Cancer Lett doi:
  54. Garrett SC, Hodgson L, Rybin A, Toutchkine A, Hahn KM, Lawrence DS, Bresnick AR (2008) A biosensor of S100A4 metastasis factor activation: inhibitor screening and cellular activation dynamics. Biochemistry 47:986–996. CrossRefPubMedGoogle Scholar
  55. Gaynor R, Irie R, Morton D, Herschman HR (1980) S100 protein is present in cultured human malignant melanomas. Nature 286:400–401CrossRefGoogle Scholar
  56. Ghavami S et al (2008) S100A8/A9 at low concentration promotes tumor cell growth via RAGE ligation and MAP kinase-dependent pathway. J Leukoc Biol 83:1484–1492. PubMedCentralCrossRefPubMedGoogle Scholar
  57. Goldstein DA (1990) Serum calcium. In: rd, Walker HK, Hall WD, Hurst JW (eds) Clinical methods: the history, physical, and laboratory examinations. Boston,Google Scholar
  58. Grigorian M, Ambartsumian N, Lukanidin E (2008) Metastasis-inducing S100A4 protein: implication in non-malignant human pathologies. Curr Mol Med 8:492–496CrossRefGoogle Scholar
  59. Grigorian M, Ambartsumian N, Lykkesfeldt AE, Bastholm L, Elling F, Georgiev G, Lukanidin E (1996) Effect of mts1 (S100A4) expression on the progression of human breast cancer cells. Int J Cancer 67:831–841CrossRefGoogle Scholar
  60. Grotterod I, Maelandsmo GM, Boye K (2010) Signal transduction mechanisms involved in S100A4-induced activation of the transcription factor NF-kappaB. BMC Cancer 10:241. PubMedCentralCrossRefPubMedGoogle Scholar
  61. Grum-Schwensen B et al (2015) S100A4-neutralizing antibody suppresses spontaneous tumor progression, pre-metastatic niche formation and alters T-cell polarization balance. BMC Cancer 15:44. PubMedCentralCrossRefPubMedGoogle Scholar
  62. Grum-Schwensen B, Klingelhofer J, Berg CH, El-Naaman C, Grigorian M, Lukanidin E, Ambartsumian N (2005) Suppression of tumor development and metastasis formation in mice lacking the S100A4(mts1) gene. Cancer Res 65:3772–3780. CrossRefPubMedGoogle Scholar
  63. Hansen MT et al (2015) A link between inflammation and metastasis: serum amyloid A1 and A3 induce metastasis, and are targets of metastasis-inducing S100A4. Oncogene 34:424–435. CrossRefPubMedGoogle Scholar
  64. Hartman KG, McKnight LE, Liriano MA, Weber DJ (2013) The evolution of S100B inhibitors for the treatment of malignant melanoma. Future Med Chem 5:97–109. PubMedCentralCrossRefPubMedGoogle Scholar
  65. Hashimoto D et al (2013) Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38:792–804. CrossRefPubMedGoogle Scholar
  66. Hauschild A, Engel G, Brenner W, Glaser R, Monig H, Henze E, Christophers E (1999) S100B protein detection in serum is a significant prognostic factor in metastatic melanoma. Oncology 56:338–344. CrossRefPubMedGoogle Scholar
  67. Henry J et al (2012) Update on the epidermal differentiation complex. Frontiers in bioscience : a journal and virtual library 17:1517–1532CrossRefGoogle Scholar
  68. Herbert JM, Augereau JM, Gleye J, Maffrand JP (1990) Chelerythrine is a potent and specific inhibitor of protein kinase. C Biochem Biophys Res Commun 172:993–999CrossRefGoogle Scholar
  69. Hermann A, Donato R, Weiger TM, Chazin WJ (2012) S100 calcium binding proteins and ion channels. Front Pharmacol 3:67. PubMedCentralCrossRefPubMedGoogle Scholar
  70. Hernandez JL et al (2013) Therapeutic targeting of tumor growth and angiogenesis with a novel anti-S100A4 monoclonal antibody. PLoS One 8:e72480. PubMedCentralCrossRefPubMedGoogle Scholar
  71. Hibino T et al (2013) S100A9 is a novel ligand of EMMPRIN that promotes melanoma metastasis. Cancer Res 73:172–183. CrossRefGoogle Scholar
  72. Hiratsuka S, Watanabe A, Aburatani H, Maru Y (2006) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 8:1369–1375. CrossRefGoogle Scholar
  73. Hiratsuka S et al (2008) The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol 10:1349–1355. CrossRefGoogle Scholar
  74. House RP et al (2011) Two functional S100A4 monomers are necessary for regulating nonmuscle myosin-IIA and HCT116 cell invasion. Biochemistry 50:6920–6932. PubMedCentralCrossRefPubMedGoogle Scholar
  75. Ichikawa M, Williams R, Wang L, Vogl T, Srikrishna G (2011) S100A8/A9 activate key genes and pathways in colon tumor progression. Mol Cancer Res : MCR 9:133–148. CrossRefGoogle Scholar
  76. Isaacs JT et al (2013) Tasquinimod is an allosteric modulator of HDAC4 survival signaling within the compromised cancer microenvironment. Cancer Res 73:1386–1399. CrossRefGoogle Scholar
  77. Kallberg E et al (2012) S100A9 interaction with TLR4 promotes tumor growth. PLoS One 7:e34207. PubMedCentralCrossRefPubMedGoogle Scholar
  78. Kawasaki H, Nakayama S, Kretsinger RH (1998) Classification and evolution of EF-hand proteins. Biometals 11:277–295CrossRefGoogle Scholar
  79. Kessel C et al. (2018) Calcium and zinc tune autoinflammatory Toll-like receptor 4 signaling by S100A12. J Allergy Clin Immunol doi:
  80. Kessel C, Holzinger D, Foell D (2013) Phagocyte-derived S100 proteins in autoinflammation: putative role in pathogenesis and usefulness as biomarkers. Clin Immunol 147:229–241. CrossRefGoogle Scholar
  81. Kim CE, Lim SK, Kim JS (2012) In vivo antitumor effect of cromolyn in PEGylated liposomes for pancreatic cancer. Journal of controlled release : official journal of the Controlled Release Society 157:190–195. CrossRefGoogle Scholar
  82. Kiss B, Duelli A, Radnai L, Kekesi KA, Katona G, Nyitray L (2012) Crystal structure of the S100A4-nonmuscle myosin IIA tail fragment complex reveals an asymmetric target binding mechanism. Proc Natl Acad Sci U S A 109:6048–6053. PubMedCentralCrossRefPubMedGoogle Scholar
  83. Kizawa K, Takahara H, Troxler H, Kleinert P, Mochida U, Heizmann CW (2008) Specific citrullination causes assembly of a globular S100A3 homotetramer: a putative Ca2+ modulator matures human hair cuticle. J Biol Chem 283:5004–5013. CrossRefGoogle Scholar
  84. Klingelhofer J, Grum-Schwensen B, Beck MK, Knudsen RS, Grigorian M, Lukanidin E, Ambartsumian N (2012) Anti-S100A4 antibody suppresses metastasis formation by blocking stroma cell invasion. Neoplasia 14:1260–1268PubMedCentralCrossRefGoogle Scholar
  85. Klingelhofer J et al (2007) Up-regulation of metastasis-promoting S100A4 (Mts-1) in rheumatoid arthritis: putative involvement in the pathogenesis of rheumatoid arthritis. Arthritis Rheum 56:779–789. CrossRefGoogle Scholar
  86. Koch M, Chitayat S, Dattilo BM, Schiefner A, Diez J, Chazin WJ, Fritz G (2010) Structural basis for ligand recognition and activation of RAGE. Structure 18:1342–1352. PubMedCentralCrossRefPubMedGoogle Scholar
  87. Koppaka V et al (2012) Aldehyde dehydrogenase inhibitors: a comprehensive review of the pharmacology, mechanism of action, substrate specificity, and clinical application. Pharmacol Rev 64:520–539. PubMedCentralCrossRefPubMedGoogle Scholar
  88. Laouedj M et al (2017) S100A9 induces differentiation of acute myeloid leukemia cells through TLR4. Blood 129:1980–1990. CrossRefGoogle Scholar
  89. Leclerc E, Fritz G, Vetter SW, Heizmann CW (2009) Binding of S100 proteins to RAGE: an update. Biochim Biophys Acta 1793:993–1007. CrossRefGoogle Scholar
  90. Leclerc E, Heizmann CW (2011) The importance of Ca2+/Zn2+ signaling S100 proteins and RAGE in translational medicine. Front Biosci (Schol Ed) 3:1232–1262Google Scholar
  91. Lee TH et al (2017) Role of S100A9 in the development of neutrophilic inflammation in asthmatics and in a murine model. Clin Immunol 183:158–166. CrossRefGoogle Scholar
  92. Lee YT et al (2008) Structure of the S100A6 complex with a fragment from the C-terminal domain of Siah-1 interacting protein: a novel mode for S100 protein target recognition. Biochemistry 47:10921–10932. PubMedCentralCrossRefPubMedGoogle Scholar
  93. Lenarcic Zivkovic M, Zareba-Koziol M, Zhukova L, Poznanski J, Zhukov I, Wyslouch-Cieszynska A (2012) Post-translational S-nitrosylation is an endogenous factor fine tuning the properties of human S100A1 protein. J Biol Chem 287:40457–40470. PubMedCentralCrossRefPubMedGoogle Scholar
  94. Li ZH, Dulyaninova NG, House RP, Almo SC, Bresnick AR (2010) S100A4 regulates macrophage chemotaxis. Mol Biol Cell 21:2598–2610. PubMedCentralCrossRefPubMedGoogle Scholar
  95. Lim SY, Raftery MJ, Geczy CL (2011) Oxidative modifications of DAMPs suppress inflammation: the case for S100A8 and S100A9. Antioxid Redox Signal 15:2235–2248. CrossRefGoogle Scholar
  96. Liriano MA, Varney KM, Wright NT, Hoffman CL, Toth EA, Ishima R, Weber DJ (2012) Target binding to S100B reduces dynamic properties and increases Ca(2+)-binding affinity for wild type and EF-hand mutant proteins. J Mol Biol 423:365–385. PubMedCentralCrossRefPubMedGoogle Scholar
  97. Liu Y, Myrvang HK, Dekker LV (2015) Annexin A2 complexes with S100 proteins: structure, function and pharmacological manipulation. Br J Pharmacol 172:1664–1676. CrossRefGoogle Scholar
  98. Mack GS, Marshall A (2010) Lost in migration. Nat Biotechnol 28:214–229. CrossRefGoogle Scholar
  99. Maelandsmo GM et al (1996) Reversal of the in vivo metastatic phenotype of human tumor cells by an anti-CAPL (mts1) ribozyme. Cancer Res 56:5490–5498Google Scholar
  100. Majorek KA, Kuhn ML, Chruszcz M, Anderson WF, Minor W (2014) Double trouble-Buffer selection and His-tag presence may be responsible for nonreproducibility of biomedical experiments. Protein Sci 23:1359–1368. PubMedCentralCrossRefPubMedGoogle Scholar
  101. Malashkevich VN et al (2010) Phenothiazines inhibit S100A4 function by inducing protein oligomerization. Proc Natl Acad Sci U S A 107:8605–8610. PubMedCentralCrossRefPubMedGoogle Scholar
  102. Malashkevich VN et al (2008) Structure of Ca2+-bound S100A4 and its interaction with peptides derived from nonmuscle myosin-IIA. Biochemistry 47:5111–5126PubMedCentralCrossRefGoogle Scholar
  103. Mansh M (2011) Ipilimumab and cancer immunotherapy: a new hope for advanced stage melanoma. Yale J Biol Med 84:381–389PubMedCentralPubMedGoogle Scholar
  104. Marenholz I, Heizmann CW, Fritz G (2004) S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun 322:1111–1122CrossRefGoogle Scholar
  105. Markowitz J et al (2004) Identification and characterization of small molecule inhibitors of the calcium-dependent S100B-p53 tumor suppressor interaction. J Med Chem 47:5085–5093CrossRefGoogle Scholar
  106. Markowitz J et al (2005) Calcium-binding properties of wild-type and EF-hand mutants of S100B in the presence and absence of a peptide derived from the C-terminal negative regulatory domain of p53. Biochemistry 44:7305–7314. CrossRefGoogle Scholar
  107. Marshak DR, Lukas TJ, Watterson DM (1985) Drug-protein interactions: binding of chlorpromazine to calmodulin, calmodulin fragments, and related calcium binding proteins. Biochemistry 24:144–150CrossRefGoogle Scholar
  108. Miller P et al (2017) Elevated S100A8 protein expression in breast cancer cells and breast tumor stroma is prognostic of poor disease outcome. Breast Cancer Res Treat 166:85–94. CrossRefGoogle Scholar
  109. Miranda KJ, Loeser RF, Yammani RR (2010) Sumoylation and nuclear translocation of S100A4 regulate IL-1beta-mediated production of matrix metalloproteinase-13. J Biol Chem 285:31517–31524. PubMedCentralCrossRefPubMedGoogle Scholar
  110. Montoya MC, DiDone L, Heier RF, Meyers MJ, Krysan DJ (2018) Antifungal phenothiazines: optimization, characterization of mechanism, and modulation of neuroreceptor activity. ACS Infect Dis 4:499–507. CrossRefGoogle Scholar
  111. Moore BW (1965) A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun 19:739–744CrossRefGoogle Scholar
  112. Moroz OV et al (2009) Both Ca2+ and Zn2+ are essential for S100A12 protein oligomerization and function. BMC Biochem 10:11. PubMedCentralCrossRefPubMedGoogle Scholar
  113. Mouta Carreira C et al (1998) S100A13 is involved in the regulation of fibroblast growth factor-1 and p40 synaptotagmin-1 release in vitro. J Biol Chem 273:22224–22231CrossRefGoogle Scholar
  114. Nefla M, Holzinger D, Berenbaum F, Jacques C (2016) The danger from within: alarmins in arthritis. Nat Rev Rheumatol 12:669–683. CrossRefGoogle Scholar
  115. Novitskaya V et al (2000) Oligomeric forms of the metastasis-related Mts1 (S100A4) protein stimulate neuronal differentiation in cultures of rat hippocampal neurons. J Biol Chem 275:41278–41286. CrossRefGoogle Scholar
  116. O'Connell JT et al (2011) VEGF-A and Tenascin-C produced by S100A4+ stromal cells are important for metastatic colonization. Proc Natl Acad Sci U S A 108:16002–16007. PubMedCentralCrossRefPubMedGoogle Scholar
  117. Oh YS et al (2013) SMARCA3, a chromatin-remodeling factor, is required for p11-dependent antidepressant action. Cell 152:831–843. PubMedCentralCrossRefPubMedGoogle Scholar
  118. Okada K, Arai S, Itoh H, Adachi S, Hayashida M, Nakase H, Ikemoto M (2016) CD68 on rat macrophages binds tightly to S100A8 and S100A9 and helps to regulate the cells' immune functions. J Leukoc Biol 100:1093–1104. CrossRefGoogle Scholar
  119. Okada M, Tokumitsu H, Kubota Y, Kobayashi R (2002) Interaction of S100 proteins with the antiallergic drugs, olopatadine, amlexanox, and cromolyn: identification of putative drug binding sites on S100A1 protein. Biochem Biophys Res Commun 292:1023–1030CrossRefGoogle Scholar
  120. Orre LM, Pernemalm M, Lengqvist J, Lewensohn R, Lehtio J (2007) Up-regulation, modification, and translocation of S100A6 induced by exposure to ionizing radiation revealed by proteomics profiling. Mol Cell Proteomics 6:2122–2131. CrossRefGoogle Scholar
  121. Oslejskova L et al (2009) Metastasis-inducing S100A4 protein is associated with the disease activity of rheumatoid arthritis. Rheumatology (Oxford) 48:1590–1594. CrossRefGoogle Scholar
  122. Ostendorp T et al (2007) Structural and functional insights into RAGE activation by multimeric S100B. EMBO J 26:3868–3878. PubMedCentralCrossRefPubMedGoogle Scholar
  123. Ozorowski G, Milton S, Luecke H (2013) Structure of a C-terminal AHNAK peptide in a 1:2:2 complex with S100A10 and an acetylated N-terminal peptide of annexin. A2. Acta Crystallogr D Biol Crystallogr 69:92–104. CrossRefGoogle Scholar
  124. Padilla L et al (2017) S100A7: from mechanism to cancer therapy. Oncogene 36:6749–6761. CrossRefGoogle Scholar
  125. Palanski BA, Khosla C (2018) Cystamine and disulfiram inhibit human transglutaminase 2 via an oxidative mechanism. Biochemistry 57:3359–3363. CrossRefGoogle Scholar
  126. Palfy G, Kiss B, Nyitray L, Bodor A (2016) Multilevel changes in protein dynamics upon complex formation of the calcium-loaded S100A4 with a nonmuscle myosin IIA tail fragment. Chembiochem 17:1829–1838. CrossRefGoogle Scholar
  127. Pankratova S et al (2018) The S100A4 protein signals through the ErbB4 receptor to promote neuronal survival. Theranostics 8:3977–3990. PubMedCentralCrossRefPubMedGoogle Scholar
  128. Park H, Adsit FG, Boyington JC (2010) The 1.5 A crystal structure of human receptor for advanced glycation endproducts (RAGE) ectodomains reveals unique features determining ligand binding. J Biol Chem 285:40762–40770. PubMedCentralCrossRefPubMedGoogle Scholar
  129. Penumutchu SR, Chou RH, Yu C (2014) Structural insights into calcium-bound S100P and the V domain of the RAGE complex. PLoS One 9:e103947. PubMedCentralCrossRefPubMedGoogle Scholar
  130. Pili R et al (2011) Phase II randomized, double-blind, placebo-controlled study of tasquinimod in men with minimally symptomatic metastatic castrate-resistant prostate cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 29:4022–4028. CrossRefGoogle Scholar
  131. Pingerelli PL, Mizukami H, Wagner AS, Bartnicki DE, Oliver JP (1990) Investigation of the Ca2(+)-dependent interaction of trifluoperazine with S100a: a 19F NMR and circular dichroism study. J Protein Chem 9:169–175CrossRefGoogle Scholar
  132. Pluta K, Jelen M, Morak-Mlodawska B, Zimecki M, Artym J, Kocieba M, Zaczynska E (2017) Azaphenothiazines - promising phenothiazine derivatives. An insight into nomenclature, synthesis, structure elucidation and biological properties. Eur J Med Chem 138:774–806. CrossRefPubMedGoogle Scholar
  133. Qin H et al (2014) Generation of a new therapeutic peptide that depletes myeloid-derived suppressor cells in tumor-bearing mice. Nat Med 20:676–681. PubMedCentralCrossRefPubMedGoogle Scholar
  134. Ramagopal UA et al (2013) Structure of the S100A4/myosin-IIA complex. BMC Struct Biol 13:31. PubMedCentralCrossRefPubMedGoogle Scholar
  135. Rani SG, Mohan SK, Yu C (2010) Molecular level interactions of S100A13 with amlexanox: inhibitor for formation of the multiprotein complex in the nonclassical pathway of acidic fibroblast growth factor. Biochemistry 49:2585–2592. CrossRefPubMedGoogle Scholar
  136. Ravasi T et al (2004) Probing the S100 protein family through genomic and functional analysis. Genomics 84:10–22. CrossRefPubMedGoogle Scholar
  137. Raymond E, Dalgleish A, Damber JE, Smith M, Pili R (2014) Mechanisms of action of tasquinimod on the tumour microenvironment. Cancer Chemother Pharmacol 73:1–8. CrossRefPubMedGoogle Scholar
  138. Reddy TR, Li C, Fischer PM, Dekker LV (2012) Three-dimensional pharmacophore design and biochemical screening identifies substituted 1,2,4-triazoles as inhibitors of the annexin A2-S100A10 protein interaction. ChemMedChem 7:1435–1446. PubMedCentralCrossRefPubMedGoogle Scholar
  139. Reddy TR, Li C, Guo X, Myrvang HK, Fischer PM, Dekker LV (2011) Design, synthesis, and structure-activity relationship exploration of 1-substituted 4-aroyl-3-hydroxy-5-phenyl-1H-pyrrol-2(5H)-one analogues as inhibitors of the annexin A2-S100A10 protein interaction. J Med Chem 54:2080–2094. PubMedCentralCrossRefPubMedGoogle Scholar
  140. Reilly SM et al (2013) An inhibitor of the protein kinases TBK1 and IKK-varepsilon improves obesity-related metabolic dysfunctions in mice. Nat Med 19:313–321. PubMedCentralCrossRefPubMedGoogle Scholar
  141. Rety S et al (2000) Structural basis of the Ca(2+)-dependent association between S100C (S100A11) and its target, the N-terminal part of annexin I. Structure Fold Des 8:175–184CrossRefGoogle Scholar
  142. Rety S et al (1999) The crystal structure of a complex of p11 with the annexin II N-terminal peptide. Nat Struct Biol 6:89–95CrossRefGoogle Scholar
  143. Riuzzi F, Sorci G, Donato R (2011) S100B protein regulates myoblast proliferation and differentiation by activating FGFR1 in a bFGF-dependent manner. J Cell Sci 124:2389–2400. CrossRefGoogle Scholar
  144. Rustandi RR, Baldisseri DM, Weber DJ (2000) Structure of the negative regulatory domain of p53 bound to S100B(betabeta). Nat Struct Biol 7:570–574CrossRefGoogle Scholar
  145. Ryckman C, Vandal K, Rouleau P, Talbot M, Tessier PA (2003) Proinflammatory activities of S100: proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion. J Immunol 170:3233–3242CrossRefGoogle Scholar
  146. Sack U et al (2011) S100A4-induced cell motility and metastasis is restricted by the Wnt/beta-catenin pathway inhibitor calcimycin in colon cancer cells. Mol Biol Cell 22:3344–3354. PubMedCentralCrossRefPubMedGoogle Scholar
  147. Saif MW (2013) Anti-VEGF agents in metastatic colorectal cancer (mCRC): are they all alike? Cancer Manag Res 5:103–115. PubMedCentralCrossRefPubMedGoogle Scholar
  148. Sakaguchi M et al (2004) PKCalpha mediates TGFbeta-induced growth inhibition of human keratinocytes via phosphorylation of S100C/A11. J Cell Biol 164:979–984. PubMedCentralCrossRefPubMedGoogle Scholar
  149. Sakaguchi M et al (2016) Identification of an S100A8 receptor Neuroplastin-beta and its heterodimer formation with EMMPRIN. J Invest Dermatol 136:2240–2250. CrossRefPubMedGoogle Scholar
  150. Schenten V et al (2018) Secretion of the phosphorylated form of S100A9 from neutrophils is essential for the proinflammatory functions of extracellular S100A8/A9. Front Immunol 9:447. PubMedCentralCrossRefPubMedGoogle Scholar
  151. Schwanhausser B et al (2011) Global quantification of mammalian gene expression control. Nature 473:337–342. CrossRefPubMedGoogle Scholar
  152. Scott AM, Wolchok JD, Old LJ (2012) Antibody therapy of cancer. Nat Rev Cancer 12:278–287. CrossRefPubMedGoogle Scholar
  153. Shishibori T et al (1999) Three distinct anti-allergic drugs, amlexanox, cromolyn and tranilast, bind to S100A12 and S100A13 of the S100 protein family. Biochem J 338(Pt 3):583–589PubMedCentralCrossRefGoogle Scholar
  154. Smith J, Stewart BJ, Glaysher S, Peregrin K, Knight LA, Weber DJ, Cree IA (2010) The effect of pentamidine on melanoma ex vivo. Anti-Cancer Drugs 21:181–185. PubMedCentralCrossRefPubMedGoogle Scholar
  155. Sprules T, Green N, Featherstone M, Gehring K (1998) Nickel-induced oligomerization of proteins containing 10-histidine tags. Biotechniques 25:20–22CrossRefGoogle Scholar
  156. Stein U et al (2011) Intervening in beta-catenin signaling by sulindac inhibits S100A4-dependent colon cancer metastasis. Neoplasia 13:131–144PubMedCentralCrossRefGoogle Scholar
  157. Stein U et al (2006) The metastasis-associated gene S100A4 is a novel target of beta-catenin/T-cell factor signaling in colon cancer. Gastroenterology 131:1486–1500. CrossRefPubMedGoogle Scholar
  158. Stewart RL et al (2016) S100A4 drives non-small cell lung cancer invasion, associates with poor prognosis, and is effectively targeted by the FDA-approved anti-helminthic agent niclosamide. Oncotarget 7:34630–34642. PubMedCentralCrossRefPubMedGoogle Scholar
  159. Streicher WW, Lopez MM, Makhatadze GI (2010) Modulation of quaternary structure of S100 proteins by calcium ions. Biophys Chem 151:181–186. PubMedCentralCrossRefPubMedGoogle Scholar
  160. Tahvili S, Torngren M, Holmberg D, Leanderson T, Ivars F (2018) Paquinimod prevents development of diabetes in the non-obese diabetic (NOD) mouse. PLoS One 13:e0196598. PubMedCentralCrossRefPubMedGoogle Scholar
  161. Takenaga K, Nakamura Y, Sakiyama S (1994) Cellular localization of pEL98 protein, an S100-related calcium binding protein, in fibroblasts and its tissue distribution analyzed by monoclonal antibodies. Cell Struct Funct 19:133–141CrossRefGoogle Scholar
  162. Takenaga K, Nakamura Y, Sakiyama S (1997) Expression of antisense RNA to S100A4 gene encoding an S100-related calcium-binding protein suppresses metastatic potential of high-metastatic Lewis lung carcinoma cells. Oncogene 14:331–337CrossRefGoogle Scholar
  163. Tamai H et al (2017) Amlexanox downregulates S100A6 to sensitize KMT2A/AFF1-positive acute lymphoblastic leukemia to TNFalpha treatment. Cancer Res 77:4426–4433. CrossRefPubMedGoogle Scholar
  164. Tidehag V et al (2014) High density of S100A9 positive inflammatory cells in prostate cancer stroma is associated with poor outcome. Eur J Cancer 50:1829–1835. CrossRefPubMedGoogle Scholar
  165. Tondera C, Laube M, Pietzsch J (2017) Insights into binding of S100 proteins to scavenger receptors: class B scavenger receptor CD36 binds S100A12 with high affinity. Amino Acids 49:183–191. CrossRefPubMedGoogle Scholar
  166. Turovskaya O et al (2008) RAGE, carboxylated glycans and S100A8/A9 play essential roles in colitis-associated carcinogenesis. Carcinogenesis 29:2035–2043. PubMedCentralCrossRefPubMedGoogle Scholar
  167. Vandonselaar M, Hickie RA, Quail JW, Delbaere LT (1994) Trifluoperazine-induced conformational change in Ca(2+)-calmodulin. Nat Struct Biol 1:795–801CrossRefGoogle Scholar
  168. Vertessy BG, Harmat V, Bocskei Z, Naray-Szabo G, Orosz F, Ovadi J (1998) Simultaneous binding of drugs with different chemical structures to Ca2+-calmodulin: crystallographic and spectroscopic studies. Biochemistry 37:15300–15310CrossRefGoogle Scholar
  169. Vogl T, Leukert N, Barczyk K, Strupat K, Roth J (2006) Biophysical characterization of S100A8 and S100A9 in the absence and presence of bivalent cations. Biochim Biophys Acta 1763:1298–1306. CrossRefPubMedGoogle Scholar
  170. Vogl T et al (2018) Autoinhibitory regulation of S100A8/S100A9 alarmin activity locally restricts sterile inflammation. J Clin Invest 128:1852–1866. PubMedCentralCrossRefPubMedGoogle Scholar
  171. Vogl T et al (2007) Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 13:1042–1049. CrossRefPubMedGoogle Scholar
  172. Vogt A, McDonald PR, Tamewitz A, Sikorski RP, Wipf P, Skoko JJ 3rd, Lazo JS (2008) A cell-active inhibitor of mitogen-activated protein kinase phosphatases restores paclitaxel-induced apoptosis in dexamethasone-protected cancer cells. Mol Cancer Ther 7:330–340. CrossRefPubMedGoogle Scholar
  173. von Bauer R et al (2013) CD166/ALCAM mediates proinflammatory effects of S100B in delayed type hypersensitivity. J Immunol 191:369–377. CrossRefGoogle Scholar
  174. Wache C et al (2015) Myeloid-related protein 14 promotes inflammation and injury in meningitis. J Infect Dis 212:247–257. CrossRefPubMedGoogle Scholar
  175. Wafer LN, Tzul FO, Pandharipande PP, Makhatadze GI (2013) Novel interactions of the TRTK12 peptide with S100 protein family members: specificity and thermodynamic characterization. Biochemistry 52:5844–5856. CrossRefGoogle Scholar
  176. Wilder PT et al (2010) In vitro screening and structural characterization of inhibitors of the S100B-p53 interaction. Int J High Throughput Screen 2010:109–126. PubMedCentralCrossRefPubMedGoogle Scholar
  177. Wright NT, Cannon BR, Wilder PT, Morgan MT, Varney KM, Zimmer DB, Weber DJ (2009) Solution structure of S100A1 bound to the CapZ peptide (TRTK12). J Mol Biol 386:1265–1277PubMedCentralCrossRefGoogle Scholar
  178. Xia C, Braunstein Z, Toomey AC, Zhong J, Rao X (2017) S100 proteins as an important regulator of macrophage inflammation. Front Immunol 8:1908. CrossRefGoogle Scholar
  179. Xie J, Burz DS, He W, Bronstein IB, Lednev I, Shekhtman A (2007) Hexameric calgranulin C (S100A12) binds to the receptor for advanced glycated end products (RAGE) using symmetric hydrophobic target-binding patches. J Biol Chem 282:4218–4231. CrossRefGoogle Scholar
  180. Xue C, Plieth D, Venkov C, Xu C, Neilson EG (2003) The gatekeeper effect of epithelial-mesenchymal transition regulates the frequency of breast cancer metastasis. Cancer Res 63:3386–3394Google Scholar
  181. Xue J et al (2016) Change in the molecular dimension of a RAGE-ligand complex triggers RAGE signaling. Structure 24:1509–1522. PubMedCentralCrossRefPubMedGoogle Scholar
  182. Yammani RR, Long D, Loeser RF (2009) Interleukin-7 stimulates secretion of S100A4 by activating the JAK/STAT signaling pathway in human articular chondrocytes. Arthritis Rheum 60:792–800. PubMedCentralCrossRefPubMedGoogle Scholar
  183. Yan WX, Armishaw C, Goyette J, Yang Z, Cai H, Alewood P, Geczy CL (2008) Mast cell and monocyte recruitment by S100A12 and its hinge domain. J Biol Chem 283:13035–13043. CrossRefGoogle Scholar
  184. Yatime L, Betzer C, Jensen RK, Mortensen S, Jensen PH, Andersen GR (2016) The structure of the RAGE:S100A6 complex reveals a unique mode of Homodimerization for S100. Proteins Structure 24:2043–2052. CrossRefGoogle Scholar
  185. Zackular JP, Chazin WJ, Skaar EP (2015) Nutritional immunity: S100 proteins at the host-pathogen interface. J Biol Chem 290:18991–18998. PubMedCentralCrossRefPubMedGoogle Scholar
  186. Zhang J et al (2018) S100A4 promotes colon inflammation and colitis-associated colon tumorigenesis. Oncoimmunology 7:e1461301. PubMedCentralCrossRefPubMedGoogle Scholar
  187. Zhang J et al (2017a) S100A4 contributes to colitis development by increasing the adherence of Citrobacter rodentium in intestinal epithelial cells. Sci Rep 7:12099. PubMedCentralCrossRefPubMedGoogle Scholar
  188. Zhang X et al (2017b) Suppression colitis and colitis-associated Colon Cancer by anti-S100a9 antibody in mice. Front Immunol 8:1774. PubMedCentralCrossRefPubMedGoogle Scholar
  189. Zibert JR, Skov L, Thyssen JP, Jacobsen GK, Grigorian M (2010) Significance of the S100A4 protein in psoriasis. J Invest Dermatol 130:150–160. CrossRefGoogle Scholar
  190. Zimmer DB, Eubanks JO, Ramakrishnan D, Criscitiello MF (2012) Evolution of the S100 family of calcium sensor proteins. Cell Calcium 53:170–179. CrossRefGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiochemistryAlbert Einstein College of MedicineBronxUSA

Personalised recommendations