Advertisement

Biophysical Reviews

, Volume 10, Issue 6, pp 1587–1604 | Cite as

BAR domain proteins—a linkage between cellular membranes, signaling pathways, and the actin cytoskeleton

  • Peter J. Carman
  • Roberto Dominguez
Review

Abstract

Actin filament assembly typically occurs in association with cellular membranes. A large number of proteins sit at the interface between actin networks and membranes, playing diverse roles such as initiation of actin polymerization, modulation of membrane curvature, and signaling. Bin/Amphiphysin/Rvs (BAR) domain proteins have been implicated in all of these functions. The BAR domain family of proteins comprises a diverse group of multi-functional effectors, characterized by their modular architecture. In addition to the membrane-curvature sensing/inducing BAR domain module, which also mediates antiparallel dimerization, most contain auxiliary domains implicated in protein-protein and/or protein-membrane interactions, including SH3, PX, PH, RhoGEF, and RhoGAP domains. The shape of the BAR domain itself varies, resulting in three major subfamilies: the classical crescent-shaped BAR, the more extended and less curved F-BAR, and the inverse curvature I-BAR subfamilies. Most members of this family have been implicated in cellular functions that require dynamic remodeling of the actin cytoskeleton, such as endocytosis, organelle trafficking, cell motility, and T-tubule biogenesis in muscle cells. Here, we review the structure and function of mammalian BAR domain proteins and the many ways in which they are interconnected with the actin cytoskeleton.

Keywords

BAR domain Actin cytoskeleton Membrane remodeling Rho GTPases Signaling 

Notes

Funding information

This work was supported by the National Institutes of Health grants R01 MH087950 and R01 GM073791.

Compliance with ethical standards

Conflict of interest

Peter J. Carman declares that he has no conflict of interest. Roberto Dominguez declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

12551_2018_467_MOESM1_ESM.pdf (52 kb)
Supplementary Table 1 (PDF 52 kb)

References

  1. Abou-Kheir W, Isaac B, Yamaguchi H, Cox D (2008) Membrane targeting of WAVE2 is not sufficient for WAVE2-dependent actin polymerization: a role for IRSp53 in mediating the interaction between Rac and WAVE2. J Cell Sci 121:379–390.  https://doi.org/10.1242/jcs.010272 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Almeida-Souza L et al (2018) A flat BAR protein promotes actin polymerization at the base of clathrin-coated pits. Cell 174:325–337 e314.  https://doi.org/10.1016/j.cell.2018.05.020 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Andersson F, Jakobsson J, Low P, Shupliakov O, Brodin L (2008) Perturbation of syndapin/PACSIN impairs synaptic vesicle recycling evoked by intense stimulation. J Neurosci 28:3925–3933.  https://doi.org/10.1523/JNEUROSCI.1754-07.2008 CrossRefGoogle Scholar
  4. Antonny B et al (2016) Membrane fission by dynamin: what we know and what we need to know. EMBO J 35:2270–2284.  https://doi.org/10.15252/embj.201694613 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Aspenstrom P (1997) A Cdc42 target protein with homology to the non-kinase domain of FER has a potential role in regulating the actin cytoskeleton. Curr Biol 7:479–487CrossRefGoogle Scholar
  6. Aspenstrom P (2014) BAR domain proteins regulate rho GTPase signaling. Small GTPases 5:7.  https://doi.org/10.4161/sgtp.28580 CrossRefGoogle Scholar
  7. Bacon C, Endris V, Rappold GA (2013) The cellular function of srGAP3 and its role in neuronal morphogenesis. Mech Dev 130:391–395.  https://doi.org/10.1016/j.mod.2012.10.005 CrossRefGoogle Scholar
  8. Bai Z, Grant BD (2015) A TOCA/CDC-42/PAR/WAVE functional module required for retrograde endocytic recycling. Proc Natl Acad Sci U S A 112:E1443–E1452.  https://doi.org/10.1073/pnas.1418651112 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Beck S, Fotinos A, Lang F, Gawaz M, Elvers M (2013) Isoform-specific roles of the GTPase activating protein Nadrin in cytoskeletal reorganization of platelets. Cell Signal 25:236–246.  https://doi.org/10.1016/j.cellsig.2012.09.005 CrossRefGoogle Scholar
  10. Bharti S et al (2007) Src-dependent phosphorylation of ASAP1 regulates podosomes. Mol Cell Biol 27:8271–8283.  https://doi.org/10.1128/MCB.01781-06 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bhatia VK, Madsen KL, Bolinger PY, Kunding A, Hedegard P, Gether U, Stamou D (2009) Amphipathic motifs in BAR domains are essential for membrane curvature sensing. EMBO J 28:3303–3314.  https://doi.org/10.1038/emboj.2009.261 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Blood PD, Swenson RD, Voth GA (2008) Factors influencing local membrane curvature induction by N-BAR domains as revealed by molecular dynamics simulations. Biophys J 95:1866–1876.  https://doi.org/10.1529/biophysj.107.121160 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Boczkowska M, Rebowski G, Dominguez R (2015) The challenges of polydisperse SAXS data analysis: two SAXS studies of PICK1 produce different structural models. Structure 23:1967–1968.  https://doi.org/10.1016/j.str.2015.10.007 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bompard G, Sharp SJ, Freiss G, Machesky LM (2005) Involvement of Rac in actin cytoskeleton rearrangements induced by MIM-B. J Cell Sci 118:5393–5403.  https://doi.org/10.1242/jcs.02640 CrossRefGoogle Scholar
  15. Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small. G proteins. Cell 129:865–877.  https://doi.org/10.1016/j.cell.2007.05.018 CrossRefGoogle Scholar
  16. Boucrot E et al (2015) Endophilin marks and controls a clathrin-independent endocytic pathway. Nature 517:460–465.  https://doi.org/10.1038/nature14067 CrossRefGoogle Scholar
  17. Braberg H, Webb BM, Tjioe E, Pieper U, Sali A, Madhusudhan MS (2012) SALIGN: a web server for alignment of multiple protein sequences and structures. Bioinformatics 28:2072–2073.  https://doi.org/10.1093/bioinformatics/bts302 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bu W, Chou AM, Lim KB, Sudhaharan T, Ahmed S (2009) The Toca-1-N-WASP complex links filopodial formation to endocytosis. J Biol Chem 284:11622–11636.  https://doi.org/10.1074/jbc.M805940200 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Bu W, Lim KB, Yu YH, Chou AM, Sudhaharan T, Ahmed S (2010) Cdc42 interaction with N-WASP and Toca-1 regulates membrane tubulation, vesicle formation and vesicle motility: implications for endocytosis. PLoS One 5:e12153.  https://doi.org/10.1371/journal.pone.0012153 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Butler MH et al (1997) Amphiphysin II (SH3P9; BIN1), a member of the amphiphysin/Rvs family, is concentrated in the cortical cytomatrix of axon initial segments and nodes of ranvier in brain and around T tubules in skeletal muscle. J Cell Biol 137:1355–1367CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cao M, Xu J, Shen C, Kam C, Huganir RL, Xia J (2007) PICK1-ICA69 heteromeric BAR domain complex regulates synaptic targeting and surface expression of AMPA receptors. J Neurosci 27:12945–12956CrossRefGoogle Scholar
  22. Cao H et al (2013) FCHSD1 and FCHSD2 are expressed in hair cell stereocilia and cuticular plate and regulate actin polymerization in vitro. PLoS One 8:e56516.  https://doi.org/10.1371/journal.pone.0056516 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Cestra G, Kwiatkowski A, Salazar M, Gertler F, De Camilli P (2005) Tuba, a GEF for CDC42, links dynamin to actin regulatory proteins. Methods Enzymol 404:537–545CrossRefGoogle Scholar
  24. Chen Y et al (2013) Loss of the F-BAR protein CIP4 reduces platelet production by impairing membrane-cytoskeleton remodeling. Blood 122:1695–1706.  https://doi.org/10.1182/blood-2013-03-484550 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Chou AM, Sem KP, Wright GD, Sudhaharan T, Ahmed S (2014) Dynamin1 is a novel target for IRSp53 protein and works with mammalian enabled (Mena) protein and Eps8 to regulate filopodial dynamics. J Biol Chem 289:24383–24396.  https://doi.org/10.1074/jbc.M114.553883 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Cohen D, Fernandez D, Lazaro-Dieguez F, Musch A (2011) The serine/threonine kinase Par1b regulates epithelial lumen polarity via IRSp53-mediated cell-ECM signaling. J Cell Biol 192:525–540.  https://doi.org/10.1083/jcb.201007002 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Coutinho-Budd J, Ghukasyan V, Zylka MJ, Polleux F (2012) The F-BAR domains from srGAP1, srGAP2 and srGAP3 regulate membrane deformation differently. J Cell Sci 125:3390–3401.  https://doi.org/10.1242/jcs.098962 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Craig AW (2012) FES/FER kinase signaling in hematopoietic cells and leukemias. Front Biosci (Landmark Ed) 17:861–875CrossRefGoogle Scholar
  29. D'Alessandro M, Hnia K, Gache V, Koch C, Gavriilidis C, Rodriguez D, et (2015) Amphiphysin 2 Orchestrates Nucleus Positioning and Shape by Linking the Nuclear Envelope to the Actin and Microtubule Cytoskeleton. Dev Cell. 35:186-198.  https://doi.org/10.1016/j.devcel.2015.09.018
  30. Dawson JC, Legg JA, Machesky LM (2006) Bar domain proteins: a role in tubulation, scission and actin assembly in clathrin-mediated endocytosis. Trends Cell Biol 16:493–498CrossRefGoogle Scholar
  31. de Kreuk BJ, Hordijk PL (2012) Control of Rho GTPase function by BAR-domains. Small GTPases 3:45–52.  https://doi.org/10.4161/sgtp.18960 CrossRefPubMedPubMedCentralGoogle Scholar
  32. de Kreuk BJ et al (2011) The F-BAR domain protein PACSIN2 associates with Rac1 and regulates cell spreading and migration. J Cell Sci 124:2375–2388.  https://doi.org/10.1242/jcs.080630 CrossRefGoogle Scholar
  33. de Kreuk BJ et al (2013) The human minor histocompatibility antigen 1 is a RhoGAP. PLoS One 8:e73962.  https://doi.org/10.1371/journal.pone.0073962 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Dharmalingam E, Haeckel A, Pinyol R, Schwintzer L, Koch D, Kessels MM, Qualmann B (2009) F-BAR proteins of the syndapin family shape the plasma membrane and are crucial for neuromorphogenesis. J Neurosci 29:13315–13327.  https://doi.org/10.1523/JNEUROSCI.3973-09.2009 CrossRefGoogle Scholar
  35. Disanza A et al (2006) Regulation of cell shape by Cdc42 is mediated by the synergic actin-bundling activity of the Eps8-IRSp53 complex. Nat Cell Biol 8:1337–1347.  https://doi.org/10.1038/ncb1502 CrossRefGoogle Scholar
  36. Disanza A et al (2013) CDC42 switches IRSp53 from inhibition of actin growth to elongation by clustering of VASP. EMBO J 32:2735–2750.  https://doi.org/10.1038/emboj.2013.208 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Doherty JT, Lenhart KC, Cameron MV, Mack CP, Conlon FL, Taylor JM (2011) Skeletal muscle differentiation and fusion are regulated by the BAR-containing rho-GTPase-activating protein (Rho-GAP), GRAF1. J Biol Chem 286:25903–25921.  https://doi.org/10.1074/jbc.M111.243030 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Dombrosky-Ferlan P et al (2003) Felic (CIP4b), a novel binding partner with the Src kinase Lyn and Cdc42, localizes to the phagocytic cup. Blood 101:2804–2809.  https://doi.org/10.1182/blood-2002-03-0851 CrossRefGoogle Scholar
  39. Dominguez R (2011) Tropomyosin: the gatekeeper’s view of the actin filament revealed. Biophys J 100:797–798.  https://doi.org/10.1016/j.bpj.2011.01.018 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Dominguez R (2016) The WH2 domain and actin nucleation: necessary but insufficient. Trends Biochem Sci 41:478–490.  https://doi.org/10.1016/j.tibs.2016.03.004 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Drager NM et al (2017) Bin1 directly remodels actin dynamics through its BAR domain. EMBO Rep 18:2051–2066.  https://doi.org/10.15252/embr.201744137 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Drummond ML et al (2018) Actin polymerization controls cilia-mediated signaling. J Cell Biol.  https://doi.org/10.1083/jcb.201703196
  43. D'Souza-Schorey C, Boshans RL, McDonough M, Stahl PD, Van Aelst L (1997) A role for POR1, a Rac1-interacting protein, in ARF6-mediated cytoskeletal rearrangements. Embo J 16:5445–5454.  https://doi.org/10.1093/emboj/16.17.5445 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Eberth A, Lundmark R, Gremer L, Dvorsky R, Koessmeier KT, McMahon HT, Ahmadian MR (2009) A BAR domain-mediated autoinhibitory mechanism for RhoGAPs of the GRAF family. Biochem J 417:371–377.  https://doi.org/10.1042/BJ20081535 CrossRefGoogle Scholar
  45. Elvers M, Beck S, Fotinos A, Ziegler M, Gawaz M (2012) The GRAF family member oligophrenin1 is a RhoGAP with BAR domain and regulates Rho GTPases in platelets. Cardiovasc Res 94:526–536.  https://doi.org/10.1093/cvr/cvs079 CrossRefGoogle Scholar
  46. Falcone S et al (2014) N-WASP is required for Amphiphysin-2/BIN1-dependent nuclear positioning and triad organization in skeletal muscle and is involved in the pathophysiology of centronuclear myopathy. EMBO Mol Med 6:1455–1475.  https://doi.org/10.15252/emmm.201404436 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Farsad K, Ringstad N, Takei K, Floyd SR, Rose K, De Camilli P (2001) Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J Cell Biol 155:193–200.  https://doi.org/10.1083/jcb.200107075 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Fauchereau F et al (2003) The RhoGAP activity of OPHN1, a new F-actin-binding protein, is negatively controlled by its amino-terminal domain. Mol Cell Neurosci 23:574–586CrossRefGoogle Scholar
  49. Ferguson SM et al (2009) Coordinated actions of actin and BAR proteins upstream of dynamin at endocytic clathrin-coated pits. Dev Cell 17:811–822.  https://doi.org/10.1016/j.devcel.2009.11.005 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Fricke R et al (2009) Drosophila Cip4/Toca-1 integrates membrane trafficking and actin dynamics through WASP and SCAR/WAVE. Curr Biol 19:1429–1437.  https://doi.org/10.1016/j.cub.2009.07.058 CrossRefGoogle Scholar
  51. Friesen H, Humphries C, Ho Y, Schub O, Colwill K, Andrews B (2006) Characterization of the yeast amphiphysins Rvs161p and Rvs167p reveals roles for the Rvs heterodimer in vivo. Mol Biol Cell 17:1306–1321.  https://doi.org/10.1091/mbc.E05-06-0476 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Fritz RD, Menshykau D, Martin K, Reimann A, Pontelli V, Pertz O (2015) SrGAP2-dependent integration of membrane geometry and Slit-Robo-repulsive cues regulates fibroblast contact inhibition of locomotion. Dev Cell 35:78–92.  https://doi.org/10.1016/j.devcel.2015.09.002 CrossRefGoogle Scholar
  53. Frost A, De Camilli P, Unger VM (2007) F-BAR proteins join the BAR family fold. Structure 15:751–753CrossRefGoogle Scholar
  54. Frost A et al (2008) Structural basis of membrane invagination by F-BAR domains. Cell 132:807–817CrossRefPubMedPubMedCentralGoogle Scholar
  55. Fujiwara T, Mammoto A, Kim Y, Takai Y (2000) Rho small G-protein-dependent binding of mDia to an Src homology 3 domain-containing IRSp53/BAIAP2. Biochem Biophys Res Commun 271:626–629.  https://doi.org/10.1006/bbrc.2000.2671 CrossRefGoogle Scholar
  56. Galic M, Tsai FC, Collins SR, Matis M, Bandara S, Meyer T (2014) Dynamic recruitment of the curvature-sensitive protein ArhGAP44 to nanoscale membrane deformations limits exploratory filopodia initiation in neurons. Elife 3:e03116.  https://doi.org/10.7554/eLife.03116 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Gallop JL, Jao CC, Kent HM, Butler PJ, Evans PR, Langen R, McMahon HT (2006) Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO J 25:2898–2910.  https://doi.org/10.1038/sj.emboj.7601174 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Gallop JL, Walrant A, Cantley LC, Kirschner MW (2013) Phosphoinositides and membrane curvature switch the mode of actin polymerization via selective recruitment of toca-1 and Snx9. Proc Natl Acad Sci U S A 110:7193–7198.  https://doi.org/10.1073/pnas.1305286110 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Garabedian MV, Stanishneva-Konovalova T, Lou C, Rands TJ, Pollard LW, Sokolova OS, Goode BL (2018) Integrated control of formin-mediated actin assembly by a stationary inhibitor and a mobile activator. J Cell Biol.  https://doi.org/10.1083/jcb.201803164
  60. Garcia-Mata R, Boulter E, Burridge K (2011) The ‘invisible hand’: regulation of RHO GTPases by RHOGDIs. Nat Rev Mol Cell Biol 12:493–504.  https://doi.org/10.1038/nrm3153 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Ge K, Prendergast GC (2000) Bin2, a functionally nonredundant member of the BAR adaptor gene family. Genomics 67:210–220.  https://doi.org/10.1006/geno.2000.6216 CrossRefGoogle Scholar
  62. Gkourtsa A et al (2015) Identification and characterization of Rvs162/Rvs167-3, a novel N-BAR heterodimer in the human fungal pathogen Candida albicans. Eukaryot Cell 14:182–193.  https://doi.org/10.1128/EC.00282-14 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Goh SL, Wang Q, Byrnes LJ, Sondermann H (2012a) Versatile membrane deformation potential of activated pacsin. PLoS One 7:e51628.  https://doi.org/10.1371/journal.pone.0051628 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Goh WI, Lim KB, Sudhaharan T, Sem KP, Bu W, Chou AM, Ahmed S (2012b) mDia1 and WAVE2 proteins interact directly with IRSp53 in filopodia and are involved in filopodium formation. J Biol Chem 287:4702–4714.  https://doi.org/10.1074/jbc.M111.305102 CrossRefGoogle Scholar
  65. Gould CJ, Maiti S, Michelot A, Graziano BR, Blanchoin L, Goode BL (2011) The formin DAD domain plays dual roles in autoinhibition and actin nucleation. Curr Biol 21:384–390.  https://doi.org/10.1016/j.cub.2011.01.047 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Graziano BR et al (2014) The F-BAR protein Hof1 tunes formin activity to sculpt actin cables during polarized growth. Mol Biol Cell 25:1730–1743.  https://doi.org/10.1091/mbc.E14-03-0850 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Guerrier S et al (2009) The F-BAR domain of srGAP2 induces membrane protrusions required for neuronal migration and morphogenesis. Cell 138:990–1004.  https://doi.org/10.1016/j.cell.2009.06.047 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Habermann B (2004) The BAR-domain family of proteins: a case of bending and binding? EMBO Rep 5:250–255CrossRefPubMedPubMedCentralGoogle Scholar
  69. Haft CR, de la Luz Sierra M, Barr VA, Haft DH, Taylor SI (1998) Identification of a family of sorting nexin molecules and characterization of their association with receptors. Mol Cell Biol 18:7278–7287CrossRefPubMedPubMedCentralGoogle Scholar
  70. Hall A (2012) Rho family GTPases. Biochem Soc Trans 40:1378–1382.  https://doi.org/10.1042/BST20120103 CrossRefGoogle Scholar
  71. Hartig SM et al (2009) The F-BAR protein CIP4 promotes GLUT4 endocytosis through bidirectional interactions with N-WASp and Dynamin-2. J Cell Sci 122:2283–2291.  https://doi.org/10.1242/jcs.041343 CrossRefPubMedPubMedCentralGoogle Scholar
  72. He J, Xia M, Tsang WH, Chow KL, Xia J (2015) ICA1L forms BAR-domain complexes with PICK1 and is critical for acrosome formation in spermiogenesis. J Cell Sci.  https://doi.org/10.1242/jcs.173534
  73. Henne WM et al (2007) Structure and analysis of FCHo2 F-BAR domain: a dimerizing and membrane recruitment module that effects membrane curvature. Structure 15:839–852.  https://doi.org/10.1016/j.str.2007.05.002 CrossRefGoogle Scholar
  74. Ho HY, Rohatgi R, Lebensohn AM, Le M, Li J, Gygi SP, Kirschner MW (2004) Toca-1 mediates Cdc42-dependent actin nucleation by activating the N-WASP-WIP complex. Cell 118:203–216CrossRefGoogle Scholar
  75. Holst B et al (2013) PICK1 deficiency impairs secretory vesicle biogenesis and leads to growth retardation and decreased glucose tolerance. PLoS Biol 11:e1001542.  https://doi.org/10.1371/journal.pbio.1001542 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Hong T et al (2014) Cardiac BIN1 folds T-tubule membrane, controlling ion flux and limiting arrhythmia. Nat Med 20:624–632.  https://doi.org/10.1038/nm.3543 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Itoh T, De Camilli P (2006) BAR, F-BAR (EFC) and ENTH/ANTH domains in the regulation of membrane-cytosol interfaces and membrane curvature. Biochim Biophys Acta 1761:897–912CrossRefGoogle Scholar
  78. Itoh T, Erdmann KS, Roux A, Habermann B, Werner H, De Camilli P (2005) Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins. Dev Cell 9:791–804CrossRefGoogle Scholar
  79. Jian X, Brown P, Schuck P, Gruschus JM, Balbo A, Hinshaw JE, Randazzo PA (2009) Autoinhibition of Arf GTPase-activating protein activity by the BAR domain in ASAP1. J Biol Chem 284:1652–1663.  https://doi.org/10.1074/jbc.M804218200 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Jin W et al (2006) Lipid binding regulates synaptic targeting of PICK1, AMPA receptor trafficking, and synaptic plasticity. J Neurosci 26:2380–2390.  https://doi.org/10.1523/JNEUROSCI.3503-05.2006 CrossRefPubMedGoogle Scholar
  81. Kamioka Y, Fukuhara S, Sawa H, Nagashima K, Masuda M, Matsuda M, Mochizuki N (2004) A novel dynamin-associating molecule, formin-binding protein 17, induces tubular membrane invaginations and participates in endocytosis. J Biol Chem 279:40091–40099.  https://doi.org/10.1074/jbc.M404899200 CrossRefPubMedGoogle Scholar
  82. Kast DJ et al (2014) Mechanism of IRSp53 inhibition and combinatorial activation by Cdc42 and downstream effectors. Nat Struct Mol Biol 21:413–422.  https://doi.org/10.1038/nsmb.2781 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Kessels MM, Qualmann B (2004) The syndapin protein family: linking membrane trafficking with the cytoskeleton. J Cell Sci 117:3077–3086CrossRefPubMedGoogle Scholar
  84. Kessels MM, Qualmann B (2015) Different functional modes of BAR domain proteins in formation and plasticity of mammalian postsynapses. J Cell Sci 128:3177–3185.  https://doi.org/10.1242/jcs.174193 CrossRefPubMedGoogle Scholar
  85. Koduru S et al (2010) Cdc42 interacting protein 4 (CIP4) is essential for integrin-dependent T-cell trafficking. Proc Natl Acad Sci U S A 107:16252–16256.  https://doi.org/10.1073/pnas.1002747107 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Kostan J et al (2014) Direct interaction of actin filaments with F-BAR protein pacsin2. EMBO Rep 15:1154–1162.  https://doi.org/10.15252/embr.201439267 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Krugmann S, Jordens I, Gevaert K, Driessens M, Vandekerckhove J, Hall A (2001) Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex. Curr Biol 11:1645–1655CrossRefGoogle Scholar
  88. Lee E et al (2002) Amphiphysin 2 (Bin1) and T-tubule biogenesis in muscle. Science 297:1193–1196.  https://doi.org/10.1126/science.1071362 CrossRefGoogle Scholar
  89. Lee SH, Kerff F, Chereau D, Ferron F, Klug A, Dominguez R (2007) Structural basis for the actin-binding function of missing-in-metastasis. Structure 15:145–155.  https://doi.org/10.1016/j.str.2006.12.005 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Leprince C, Le Scolan E, Meunier B, Fraisier V, Brandon N, De Gunzburg J, Camonis J (2003) Sorting nexin 4 and amphiphysin 2, a new partnership between endocytosis and intracellular trafficking. J Cell Sci 116:1937–1948.  https://doi.org/10.1242/jcs.00403 CrossRefPubMedGoogle Scholar
  91. Leung Y, Ally S, Goldberg MB (2008) Bacterial actin assembly requires toca-1 to relieve N-wasp autoinhibition. Cell Host Microbe 3:39–47.  https://doi.org/10.1016/j.chom.2007.10.011 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Li XE, Tobacman LS, Mun JY, Craig R, Fischer S, Lehman W (2011) Tropomyosin position on F-actin revealed by EM reconstruction and computational chemistry. Biophys J 100:1005–1013.  https://doi.org/10.1016/j.bpj.2010.12.3697 CrossRefPubMedGoogle Scholar
  93. Lichte B, Veh RW, Meyer HE, Kilimann MW (1992) Amphiphysin, a novel protein associated with synaptic vesicles. EMBO J 11:2521–2530CrossRefPubMedPubMedCentralGoogle Scholar
  94. Lim KB et al (2008) The Cdc42 effector IRSp53 generates filopodia by coupling membrane protrusion with actin dynamics. J Biol Chem 283:20454–20472.  https://doi.org/10.1074/jbc.M710185200 CrossRefPubMedGoogle Scholar
  95. Lo WT et al (2017) A coincidence detection mechanism controls PX-BAR domain-mediated endocytic membrane remodeling via an allosteric structural switch. Dev Cell 43:522–529 e524.  https://doi.org/10.1016/j.devcel.2017.10.019 CrossRefPubMedGoogle Scholar
  96. Lombardi R, Riezman H (2001) Rvs161p and Rvs167p, the two yeast amphiphysin homologs, function together in vivo. J Biol Chem 276:6016–6022.  https://doi.org/10.1074/jbc.M008735200 CrossRefPubMedGoogle Scholar
  97. Lu W, Ziff EB (2005) PICK1 interacts with ABP/GRIP to regulate AMPA receptor trafficking. Neuron 47:407–421.  https://doi.org/10.1016/j.neuron.2005.07.006 CrossRefPubMedGoogle Scholar
  98. Luo W et al (2017) ARHGAP42 is activated by Src-mediated tyrosine phosphorylation to promote cell motility. J Cell Sci 130:2382–2393.  https://doi.org/10.1242/jcs.197434 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Madasu Y et al (2015) PICK1 is implicated in organelle motility in an Arp2/3 complex-independent manner. Mol Biol Cell 26:1308–1322.  https://doi.org/10.1091/mbc.E14-10-1448 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Maddugoda MP et al (2011) cAMP signaling by anthrax edema toxin induces transendothelial cell tunnels, which are resealed by MIM via Arp2/3-driven actin polymerization. Cell Host Microbe 10:464–474.  https://doi.org/10.1016/j.chom.2011.09.014 CrossRefGoogle Scholar
  101. Madsen KL et al (2008) Membrane localization is critical for activation of the PICK1 BAR domain. Traffic 9:1327–1343.  https://doi.org/10.1111/j.1600-0854.2008.00761.x CrossRefPubMedPubMedCentralGoogle Scholar
  102. Masuda M, Takeda S, Sone M, Ohki T, Mori H, Kamioka Y, Mochizuki N (2006) Endophilin BAR domain drives membrane curvature by two newly identified structure-based mechanisms. EMBO J 25:2889–2897CrossRefPubMedPubMedCentralGoogle Scholar
  103. Mattila PK, Pykalainen A, Saarikangas J, Paavilainen VO, Vihinen H, Jokitalo E, Lappalainen P (2007) Missing-in-metastasis and IRSp53 deform PI(4,5)P2-rich membranes by an inverse BAR domain-like mechanism. J Cell Biol 176:953–964.  https://doi.org/10.1083/jcb.200609176 CrossRefPubMedPubMedCentralGoogle Scholar
  104. McDonald NA, Gould KL (2016) Linking up at the BAR: oligomerization and F-BAR protein function. Cell Cycle 15:1977–1985.  https://doi.org/10.1080/15384101.2016.1190893 CrossRefPubMedPubMedCentralGoogle Scholar
  105. McIntosh BB, Pyrpassopoulos S, Holzbaur ELF, Ostap EM (2018) Opposing kinesin and myosin-I motors drive membrane deformation and tubulation along engineered cytoskeletal networks. Curr Biol 28:236–248 e235.  https://doi.org/10.1016/j.cub.2017.12.007 CrossRefGoogle Scholar
  106. McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438:590–596.  https://doi.org/10.1038/nature04396 CrossRefGoogle Scholar
  107. McPherson VA et al (2009) Contributions of F-BAR and SH2 domains of Fes protein tyrosine kinase for coupling to the FcepsilonRI pathway in mast cells. Mol Cell Biol 29:389–401.  https://doi.org/10.1128/MCB.00904-08 CrossRefGoogle Scholar
  108. Meinecke M, Boucrot E, Camdere G, Hon WC, Mittal R, McMahon HT (2013) Cooperative recruitment of dynamin and BIN/amphiphysin/Rvs (BAR) domain-containing proteins leads to GTP-dependent membrane scission. J Biol Chem 288:6651–6661.  https://doi.org/10.1074/jbc.M112.444869 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Meiring JCM et al (2018) Co-polymers of actin and tropomyosin account for a major fraction of the human actin cytoskeleton. Curr Biol 28:2331–2337 e2335.  https://doi.org/10.1016/j.cub.2018.05.053 CrossRefGoogle Scholar
  110. Miki H, Yamaguchi H, Suetsugu S, Takenawa T (2000) IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature 408:732–735.  https://doi.org/10.1038/35047107 CrossRefGoogle Scholar
  111. Millard TH, Bompard G, Heung MY, Dafforn TR, Scott DJ, Machesky LM, Futterer K (2005) Structural basis of filopodia formation induced by the IRSp53/MIM homology domain of human IRSp53. EMBO J 24:240–250.  https://doi.org/10.1038/sj.emboj.7600535 CrossRefPubMedPubMedCentralGoogle Scholar
  112. Mim C, Unger VM (2012) Membrane curvature and its generation by BAR proteins. Trends Biochem Sci 37:526–533.  https://doi.org/10.1016/j.tibs.2012.09.001 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Mim C, Cui H, Gawronski-Salerno JA, Frost A, Lyman E, Voth GA, Unger VM (2012) Structural basis of membrane bending by the N-BAR protein endophilin. Cell 149:137–145.  https://doi.org/10.1016/j.cell.2012.01.048 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Modregger J, Ritter B, Witter B, Paulsson M, Plomann M (2000) All three PACSIN isoforms bind to endocytic proteins and inhibit endocytosis. J Cell Sci 113(Pt 24):4511–4521Google Scholar
  115. Moravcevic K, Oxley CL, Lemmon MA (2012) Conditional peripheral membrane proteins: facing up to limited specificity. Structure 20:15–27.  https://doi.org/10.1016/j.str.2011.11.012 CrossRefGoogle Scholar
  116. Munn AL, Stevenson BJ, Geli MI, Riezman H (1995) end5, end6, and end7: mutations that cause actin delocalization and block the internalization step of endocytosis in Saccharomyces cerevisiae. Mol Biol Cell 6:1721–1742CrossRefPubMedPubMedCentralGoogle Scholar
  117. Nishimura T, Morone N, Suetsugu S (2018) Membrane re-modelling by BAR domain superfamily proteins via molecular and non-molecular factors. Biochem Soc Trans 46:379–389.  https://doi.org/10.1042/BST20170322 CrossRefGoogle Scholar
  118. Oikawa T, Okamura H, Dietrich F, Senju Y, Takenawa T, Suetsugu S (2013) IRSp53 mediates podosome formation via VASP in NIH-Src cells. PLoS One 8:e60528.  https://doi.org/10.1371/journal.pone.0060528 CrossRefPubMedPubMedCentralGoogle Scholar
  119. Pan L, Wu H, Shen C, Shi Y, Jin W, Xia J, Zhang M (2007) Clustering and synaptic targeting of PICK1 requires direct interaction between the PDZ domain and lipid membranes. EMBO J 26:4576–4587.  https://doi.org/10.1038/sj.emboj.7601860 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Panchal SC, Kaiser DA, Torres E, Pollard TD, Rosen MK (2003) A conserved amphipathic helix in WASP/Scar proteins is essential for activation of Arp2/3 complex. Nat Struct Biol 10:591–598CrossRefGoogle Scholar
  121. Parks WT et al (2001) Sorting nexin 6, a novel SNX, interacts with the transforming growth factor-beta family of receptor serine-threonine kinases. J Biol Chem 276:19332–19339.  https://doi.org/10.1074/jbc.M100606200 CrossRefGoogle Scholar
  122. Pei J, Grishin NV (2014) PROMALS3D: multiple protein sequence alignment enhanced with evolutionary and three-dimensional structural information. Methods Mol Biol 1079:263–271.  https://doi.org/10.1007/978-1-62703-646-7_17 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Perez JL, Khatri L, Chang C, Srivastava S, Osten P, Ziff EB (2001) PICK1 targets activated protein kinase Calpha to AMPA receptor clusters in spines of hippocampal neurons and reduces surface levels of the AMPA-type glutamate receptor subunit 2. J Neurosci 21:5417–5428CrossRefGoogle Scholar
  124. Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJ, Evans PR, McMahon HT (2004) BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303:495–499CrossRefGoogle Scholar
  125. Pichot CS et al (2010) Cdc42-interacting protein 4 promotes breast cancer cell invasion and formation of invadopodia through activation of N-WASp. Cancer Res 70:8347–8356.  https://doi.org/10.1158/0008-5472.CAN-09-4149 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Pollard TD (2007) Regulation of actin filament assembly by Arp2/3 complex and formins. Annu Rev Biophys Biomol Struct 36:451–477CrossRefGoogle Scholar
  127. Pykalainen A et al (2011) Pinkbar is an epithelial-specific BAR domain protein that generates planar membrane structures. Nat Struct Mol Biol 18:902–907.  https://doi.org/10.1038/nsmb.2079 CrossRefPubMedPubMedCentralGoogle Scholar
  128. Pylypenko O, Lundmark R, Rasmuson E, Carlsson SR, Rak A (2007) The PX-BAR membrane-remodeling unit of sorting nexin 9. EMBO J 26:4788–4800CrossRefPubMedPubMedCentralGoogle Scholar
  129. Qualmann B, Kelly RB (2000) Syndapin isoforms participate in receptor-mediated endocytosis and actin organization. J Cell Biol 148:1047–1062CrossRefPubMedPubMedCentralGoogle Scholar
  130. Qualmann B, Roos J, DiGregorio PJ, Kelly RB (1999) Syndapin I, a synaptic dynamin-binding protein that associates with the neural Wiskott-Aldrich syndrome protein. Mol Biol Cell 10:501–513CrossRefPubMedPubMedCentralGoogle Scholar
  131. Quan A, Robinson PJ (2013) Syndapin--a membrane remodelling and endocytic F-BAR protein. FEBS J 280:5198–5212.  https://doi.org/10.1111/febs.12343 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Ramjaun AR, Philie J, de Heuvel E, McPherson PS (1999) The N terminus of amphiphysin II mediates dimerization and plasma membrane targeting. J Biol Chem 274:19785–19791CrossRefPubMedPubMedCentralGoogle Scholar
  133. Rao Y et al (2010) Molecular basis for SH3 domain regulation of F-BAR-mediated membrane deformation. Proc Natl Acad Sci U S A 107:8213–8218.  https://doi.org/10.1073/pnas.1003478107 CrossRefPubMedPubMedCentralGoogle Scholar
  134. Renard HF et al (2015) Endophilin-A2 functions in membrane scission in clathrin-independent endocytosis. Nature 517:493–496.  https://doi.org/10.1038/nature14064 CrossRefPubMedPubMedCentralGoogle Scholar
  135. Ridley AJ (2012) Historical overview of Rho GTPases. Methods Mol Biol 827:3–12.  https://doi.org/10.1007/978-1-61779-442-1_1 CrossRefPubMedPubMedCentralGoogle Scholar
  136. Ridley AJ (2015) Rho GTPase signalling in cell migration. Curr Opin Cell Biol 36:103–112.  https://doi.org/10.1016/j.ceb.2015.08.005 CrossRefPubMedPubMedCentralGoogle Scholar
  137. Robens JM, Yeow-Fong L, Ng E, Hall C, Manser E (2010) Regulation of IRSp53-dependent filopodial dynamics by antagonism between 14-3-3 binding and SH3-mediated localization. Mol Cell Biol 30:829–844.  https://doi.org/10.1128/MCB.01574-08 CrossRefPubMedPubMedCentralGoogle Scholar
  138. Rocca DL, Martin S, Jenkins EL, Hanley JG (2008) Inhibition of Arp2/3-mediated actin polymerization by PICK1 regulates neuronal morphology and AMPA receptor endocytosis. Nat Cell Biol 10:259–271.  https://doi.org/10.1038/ncb1688 CrossRefPubMedPubMedCentralGoogle Scholar
  139. Saarikangas J, Hakanen J, Mattila PK, Grumet M, Salminen M, Lappalainen P (2008) ABBA regulates plasma-membrane and actin dynamics to promote radial glia extension. J Cell Sci 121:1444–1454.  https://doi.org/10.1242/jcs.027466 CrossRefPubMedPubMedCentralGoogle Scholar
  140. Saarikangas J et al (2009) Molecular mechanisms of membrane deformation by I-BAR domain proteins. Curr Biol 19:95–107.  https://doi.org/10.1016/j.cub.2008.12.029 CrossRefPubMedPubMedCentralGoogle Scholar
  141. Saarikangas J, Zhao H, Lappalainen P (2010) Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiol Rev 90:259–289.  https://doi.org/10.1152/physrev.00036.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  142. Saarikangas J et al (2011) Missing-in-metastasis MIM/MTSS1 promotes actin assembly at intercellular junctions and is required for integrity of kidney epithelia. J Cell Sci 124:1245–1255.  https://doi.org/10.1242/jcs.082610 CrossRefGoogle Scholar
  143. Saarikangas J et al (2015) MIM-induced membrane bending promotes dendritic spine initiation. Dev Cell 33:644–659.  https://doi.org/10.1016/j.devcel.2015.04.014 CrossRefGoogle Scholar
  144. Sakamuro D, Elliott KJ, Wechsler-Reya R, Prendergast GC (1996) BIN1 is a novel MYC-interacting protein with features of a tumour suppressor. Nat Genet 14:69–77.  https://doi.org/10.1038/ng0996-69 CrossRefPubMedPubMedCentralGoogle Scholar
  145. Salazar MA et al (2003) Tuba, a novel protein containing bin/amphiphysin/Rvs and Dbl homology domains, links dynamin to regulation of the actin cytoskeleton. J Biol Chem 278:49031–49043CrossRefGoogle Scholar
  146. Sanchez-Barrena MJ, Vallis Y, Clatworthy MR, Doherty GJ, Veprintsev DB, Evans PR, McMahon HT (2012) Bin2 is a membrane sculpting N-BAR protein that influences leucocyte podosomes, motility and phagocytosis. PLoS One 7:e52401.  https://doi.org/10.1371/journal.pone.0052401 CrossRefPubMedPubMedCentralGoogle Scholar
  147. Sathe M et al (2018) Small GTPases and BAR domain proteins regulate branched actin polymerisation for clathrin and dynamin-independent endocytosis. Nat Commun 9:1835.  https://doi.org/10.1038/s41467-018-03955-w CrossRefPubMedPubMedCentralGoogle Scholar
  148. Schuler S, Hauptmann J, Perner B, Kessels MM, Englert C, Qualmann B (2013) Ciliated sensory hair cell formation and function require the F-BAR protein syndapin I and the WH2 domain-based actin nucleator. Cobl J Cell Sci 126:196–208.  https://doi.org/10.1242/jcs.111674 CrossRefPubMedPubMedCentralGoogle Scholar
  149. Schwintzer L, Koch N, Ahuja R, Grimm J, Kessels MM, Qualmann B (2011) The functions of the actin nucleator Cobl in cellular morphogenesis critically depend on syndapin I. EMBO J 30:3147–3159.  https://doi.org/10.1038/emboj.2011.207 CrossRefPubMedPubMedCentralGoogle Scholar
  150. Scita G, Confalonieri S, Lappalainen P, Suetsugu S (2008) IRSp53: crossing the road of membrane and actin dynamics in the formation of membrane protrusions. Trends Cell Biol 18:52–60.  https://doi.org/10.1016/j.tcb.2007.12.002 CrossRefPubMedPubMedCentralGoogle Scholar
  151. Seaman MN, Williams HP (2002) Identification of the functional domains of yeast sorting nexins Vps5p and Vps17p. Mol Biol Cell 13:2826–2840.  https://doi.org/10.1091/mbc.02-05-0064 CrossRefPubMedPubMedCentralGoogle Scholar
  152. Senju Y, Itoh Y, Takano K, Hamada S, Suetsugu S (2011) Essential role of PACSIN2/syndapin-II in caveolae membrane sculpting. J Cell Sci 124:2032–2040.  https://doi.org/10.1242/jcs.086264 CrossRefPubMedPubMedCentralGoogle Scholar
  153. Shimada A et al (2007) Curved EFC/F-BAR-domain dimers are joined end to end into a filament for membrane invagination in endocytosis. Cell 129:761–772CrossRefPubMedPubMedCentralGoogle Scholar
  154. Simionescu-Bankston A et al (2013) The N-BAR domain protein, Bin3, regulates Rac1- and Cdc42-dependent processes in myogenesis. Dev Biol 382:160–171.  https://doi.org/10.1016/j.ydbio.2013.07.004 CrossRefPubMedPubMedCentralGoogle Scholar
  155. Simunovic M, Mim C, Marlovits TC, Resch G, Unger VM, Voth GA (2013) Protein-mediated transformation of lipid vesicles into tubular networks. Biophys J 105:711–719.  https://doi.org/10.1016/j.bpj.2013.06.039 CrossRefPubMedPubMedCentralGoogle Scholar
  156. Simunovic M et al (2016) How curvature-generating proteins build scaffolds on membrane nanotubes. Proc Natl Acad Sci U S A 113:11226–11231.  https://doi.org/10.1073/pnas.1606943113 CrossRefPubMedPubMedCentralGoogle Scholar
  157. Sivadon P, Bauer F, Aigle M, Crouzet M (1995) Actin cytoskeleton and budding pattern are altered in the yeast rvs161 mutant: the Rvs161 protein shares common domains with the brain protein amphiphysin. Mol Gen Genet 246:485–495CrossRefPubMedPubMedCentralGoogle Scholar
  158. Slepnev VI, Ochoa GC, Butler MH, Grabs D, De Camilli P (1998) Role of phosphorylation in regulation of the assembly of endocytic coat complexes. Science 281:821–824CrossRefPubMedPubMedCentralGoogle Scholar
  159. Sporny M et al (2017) Structural history of human SRGAP2 proteins. Mol Biol Evol 34:1463–1478.  https://doi.org/10.1093/molbev/msx094 CrossRefPubMedPubMedCentralGoogle Scholar
  160. Stanishneva-Konovalova TB, Kelley CF, Eskin TL, Messelaar EM, Wasserman SA, Sokolova OS, Rodal AA (2016) Coordinated autoinhibition of F-BAR domain membrane binding and WASp activation by Nervous Wreck. Proc Natl Acad Sci U S A 113:E5552–E5561.  https://doi.org/10.1073/pnas.1524412113 CrossRefPubMedPubMedCentralGoogle Scholar
  161. Sudhaharan T, Sem KP, Liew HF, Yu YH, Goh WI, Chou AM, Ahmed S (2016) The Rho GTPase Rif signals through IRTKS, Eps8 and WAVE2 to generate dorsal membrane ruffles and filopodia. J Cell Sci 129:2829–2840.  https://doi.org/10.1242/jcs.179655 CrossRefPubMedPubMedCentralGoogle Scholar
  162. Suetsugu S, Gautreau A (2012) Synergistic BAR-NPF interactions in actin-driven membrane remodeling. Trends Cell Biol 22:141–150.  https://doi.org/10.1016/j.tcb.2012.01.001 CrossRefPubMedPubMedCentralGoogle Scholar
  163. Suetsugu S et al (2006) The RAC binding domain/IRSp53-MIM homology domain of IRSp53 induces RAC-dependent membrane deformation. J Biol Chem 281:35347–35358.  https://doi.org/10.1074/jbc.M606814200 CrossRefPubMedPubMedCentralGoogle Scholar
  164. Takano K, Toyooka K, Suetsugu S (2008) EFC/F-BAR proteins and the N-WASP-WIP complex induce membrane curvature-dependent actin polymerization. EMBO J 27:2817–2828.  https://doi.org/10.1038/emboj.2008.216 CrossRefPubMedPubMedCentralGoogle Scholar
  165. Takei K, Slepnev VI, Haucke V, De Camilli P (1999) Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat Cell Biol 1:33–39.  https://doi.org/10.1038/9004 CrossRefPubMedPubMedCentralGoogle Scholar
  166. Tarricone C, Xiao B, Justin N, Walker PA, Rittinger K, Gamblin SJ, Smerdon SJ (2001) The structural basis of Arfaptin-mediated cross-talk between Rac and Arf signalling pathways. Nature 411:215–219CrossRefPubMedPubMedCentralGoogle Scholar
  167. Toguchi M, Richnau N, Ruusala A, Aspenstrom P (2010) Members of the CIP4 family of proteins participate in the regulation of platelet-derived growth factor receptor-beta-dependent actin reorganization and migration. Biol Cell 102:215–230.  https://doi.org/10.1042/BC20090033 CrossRefPubMedPubMedCentralGoogle Scholar
  168. Tsuboi S et al (2009) FBP17 mediates a common molecular step in the formation of podosomes and phagocytic cups in macrophages. J Biol Chem 284:8548–8556.  https://doi.org/10.1074/jbc.M805638200 CrossRefPubMedPubMedCentralGoogle Scholar
  169. Tsujita K, Suetsugu S, Sasaki N, Furutani M, Oikawa T, Takenawa T (2006) Coordination between the actin cytoskeleton and membrane deformation by a novel membrane tubulation domain of PCH proteins is involved in endocytosis. J Cell Biol 172:269–279CrossRefPubMedPubMedCentralGoogle Scholar
  170. Tsujita K, Kondo A, Kurisu S, Hasegawa J, Itoh T, Takenawa T (2013) Antagonistic regulation of F-BAR protein assemblies controls actin polymerization during podosome formation. J Cell Sci 126:2267–2278.  https://doi.org/10.1242/jcs.122515 CrossRefPubMedPubMedCentralGoogle Scholar
  171. Van Aelst L, Joneson T, Bar-Sagi D (1996) Identification of a novel Rac1-interacting protein involved in membrane ruffling. EMBO J 15:3778–3786CrossRefPubMedPubMedCentralGoogle Scholar
  172. Van Itallie CM, Tietgens AJ, Krystofiak E, Kachar B, Anderson JM (2015) A complex of ZO-1 and the BAR-domain protein TOCA-1 regulates actin assembly at the tight junction. Mol Biol Cell 26:2769–2787.  https://doi.org/10.1091/mbc.E15-04-0232 CrossRefPubMedPubMedCentralGoogle Scholar
  173. Vehlow A, Soong D, Vizcay-Barrena G, Bodo C, Law AL, Perera U, Krause M (2013) Endophilin, Lamellipodin, and Mena cooperate to regulate F-actin-dependent EGF-receptor endocytosis. EMBO J 32:2722–2734.  https://doi.org/10.1038/emboj.2013.212 CrossRefPubMedPubMedCentralGoogle Scholar
  174. Vingadassalom D et al (2009) Insulin receptor tyrosine kinase substrate links the E. coli O157:H7 actin assembly effectors Tir and EspF(U) during pedestal formation. Proc Natl Acad Sci U S A 106:6754–6759.  https://doi.org/10.1073/pnas.0809131106 CrossRefPubMedPubMedCentralGoogle Scholar
  175. Wang Q et al (2009) Molecular mechanism of membrane constriction and tubulation mediated by the F-BAR protein Pacsin/Syndapin. Proc Natl Acad Sci U S A 106:12700–12705.  https://doi.org/10.1073/pnas.0902974106 CrossRefPubMedPubMedCentralGoogle Scholar
  176. Wassmer T, Attar N, Bujny MV, Oakley J, Traer CJ, Cullen PJ (2007) A loss-of-function screen reveals SNX5 and SNX6 as potential components of the mammalian retromer. J Cell Sci 120:45–54.  https://doi.org/10.1242/jcs.03302 CrossRefPubMedGoogle Scholar
  177. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191.  https://doi.org/10.1093/bioinformatics/btp033 CrossRefPubMedPubMedCentralGoogle Scholar
  178. Watson JR, Fox HM, Nietlispach D, Gallop JL, Owen D, Mott HR (2016) Investigation of THE interaction between Cdc42 and its effector TOCA1: handover of Cdc42 to the actin regulator N-WASP is facilitated by differential binding affinities. J Biol Chem 291:13875–13890.  https://doi.org/10.1074/jbc.M116.724294 CrossRefPubMedPubMedCentralGoogle Scholar
  179. Weiss SM et al (2009) IRSp53 links the enterohemorrhagic E. coli effectors Tir and EspFU for actin pedestal formation. Cell Host Microbe 5:244–258.  https://doi.org/10.1016/j.chom.2009.02.003 CrossRefPubMedGoogle Scholar
  180. Weissenhorn W (2005) Crystal structure of the endophilin-A1 BAR domain. J Mol Biol 351:653–661CrossRefPubMedGoogle Scholar
  181. Wigge P, Kohler K, Vallis Y, Doyle CA, Owen D, Hunt SP, McMahon HT (1997) Amphiphysin heterodimers: potential role in clathrin-mediated endocytosis. Mol Biol Cell 8:2003–2015CrossRefPubMedPubMedCentralGoogle Scholar
  182. Willet AH, McDonald NA, Bohnert KA, Baird MA, Allen JR, Davidson MW, Gould KL (2015) The F-BAR Cdc15 promotes contractile ring formation through the direct recruitment of the formin Cdc12. J Cell Biol 208:391–399.  https://doi.org/10.1083/jcb.201411097 CrossRefPubMedPubMedCentralGoogle Scholar
  183. Wu T, Baumgart T (2014) BIN1 membrane curvature sensing and generation show autoinhibition regulated by downstream ligands and PI(4,5)P2. Biochemistry 53:7297–7309.  https://doi.org/10.1021/bi501082r CrossRefPubMedPubMedCentralGoogle Scholar
  184. Yamada H et al (2007) Amphiphysin 1 is important for actin polymerization during phagocytosis. Mol Biol Cell 18:4669–4680.  https://doi.org/10.1091/mbc.e07-04-0296 CrossRefPubMedPubMedCentralGoogle Scholar
  185. Yamada H et al (2009) Dynamic interaction of amphiphysin with N-WASP regulates actin assembly. J Biol Chem 284:34244–34256.  https://doi.org/10.1074/jbc.M109.064204 CrossRefPubMedPubMedCentralGoogle Scholar
  186. Yan S et al (2013) The F-BAR protein Cip4/Toca-1 antagonizes the formin Diaphanous in membrane stabilization and compartmentalization. J Cell Sci 126:1796–1805.  https://doi.org/10.1242/jcs.118422 CrossRefPubMedPubMedCentralGoogle Scholar
  187. Yang C, Hoelzle M, Disanza A, Scita G, Svitkina T (2009) Coordination of membrane and actin cytoskeleton dynamics during filopodia protrusion. PLoS One 4:e5678.  https://doi.org/10.1371/journal.pone.0005678 CrossRefPubMedPubMedCentralGoogle Scholar
  188. Yang Y et al (2018) Endophilin A1 promotes actin polymerization in dendritic spines required for synaptic potentiation. Front Mol Neurosci 11:177.  https://doi.org/10.3389/fnmol.2018.00177 CrossRefPubMedPubMedCentralGoogle Scholar
  189. Yao G et al (2014) Polycystin-1 regulates actin cytoskeleton organization and directional cell migration through a novel PC1-Pacsin 2-N-wasp complex. Hum Mol Genet 23:2769–2779.  https://doi.org/10.1093/hmg/ddt672 CrossRefPubMedPubMedCentralGoogle Scholar
  190. Yarar D, Surka MC, Leonard MC, Schmid SL (2008) SNX9 activities are regulated by multiple phosphoinositides through both PX and BAR domains. Traffic 9:133–146.  https://doi.org/10.1111/j.1600-0854.2007.00675.x CrossRefPubMedGoogle Scholar
  191. Youn JY et al (2010) Dissecting BAR domain function in the yeast Amphiphysins Rvs161 and Rvs167 during endocytosis. Mol Biol Cell 21:3054–3069.  https://doi.org/10.1091/mbc.E10-03-0181 CrossRefPubMedPubMedCentralGoogle Scholar
  192. Yu D et al (2011) Murine missing in metastasis (MIM) mediates cell polarity and regulates the motility response to growth factors. PLoS One 6:e20845.  https://doi.org/10.1371/journal.pone.0020845 CrossRefPubMedPubMedCentralGoogle Scholar
  193. Zeng XC, Luo X, Wang SX, Zhan X (2013) Fibronectin-mediated cell spreading requires ABBA-Rac1 signaling. J Cell Biochem 114:773–781.  https://doi.org/10.1002/jcb.24415 CrossRefPubMedGoogle Scholar
  194. Zhang J, Zhang X, Guo Y, Xu L, Pei D (2009) Sorting nexin 33 induces mammalian cell micronucleated phenotype and actin polymerization by interacting with Wiskott-Aldrich syndrome protein. J Biol Chem 284:21659–21669.  https://doi.org/10.1074/jbc.M109.007278 CrossRefPubMedPubMedCentralGoogle Scholar
  195. Zhao H, Pykalainen A, Lappalainen P (2011) I-BAR domain proteins: linking actin and plasma membrane dynamics. Curr Opin Cell Biol 23:14–21.  https://doi.org/10.1016/j.ceb.2010.10.005 CrossRefPubMedGoogle Scholar
  196. Zheng D et al (2010) Abba promotes PDGF-mediated membrane ruffling through activation of the small GTPase Rac1. Biochem Biophys Res Commun 401:527–532.  https://doi.org/10.1016/j.bbrc.2010.09.087 CrossRefPubMedPubMedCentralGoogle Scholar
  197. Zimmerberg J, Kozlov MM (2006) How proteins produce cellular membrane curvature. Nat Rev Mol Cell Biol 7:9–19.  https://doi.org/10.1038/nrm1784 CrossRefGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Biochemistry and Molecular Biophysics Graduate Group, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations