Advertisement

Biophysical Reviews

, Volume 10, Issue 4, pp 1133–1149 | Cite as

Understanding amyloid fibril formation using protein fragments: structural investigations via vibrational spectroscopy and solid-state NMR

  • Benjamin Martial
  • Thierry Lefèvre
  • Michèle Auger
Review
  • 156 Downloads

Abstract

It is well established that amyloid proteins play a primary role in neurodegenerative diseases. Alzheimer’s, Parkinson’s, type II diabetes, and Creutzfeldt-Jakob’s diseases are part of a wider family encompassing more than 50 human pathologies related to aggregation of proteins. Although this field of research is thoroughly investigated, several aspects of fibrillization remain misunderstood, which in turn slows down, or even impedes, advances in treating and curing amyloidoses. To solve this problem, several research groups have chosen to focus on short fragments of amyloid proteins, sequences that have been found to be of great importance for the amyloid formation process. Studying short peptides allows bypassing the complexity of working with full-length proteins and may provide important information relative to critical segments of amyloid proteins. To this end, efficient biophysical tools are required. In this review, we focus on two essential types of spectroscopic techniques, i.e., vibrational spectroscopy and its derivatives (conventional Raman scattering, deep-UV resonance Raman (DUVRR), Raman optical activity (ROA), surface-enhanced Raman spectroscopy (SERS), tip-enhanced Raman spectroscopy (TERS), infrared (IR) absorption spectroscopy, vibrational circular dichroism (VCD)) and solid-state nuclear magnetic resonance (ssNMR). These techniques revealed powerful to provide a better atomic and molecular comprehension of the amyloidogenic process and fibril structure. This review aims at underlining the information that these techniques can provide and at highlighting their strengths and weaknesses when studying amyloid fragments. Meaningful examples from the literature are provided for each technique, and their complementarity is stressed for the kinetic and structural characterization of amyloid fibril formation.

Keywords

Amyloid fragments Raman spectroscopy IR spectroscopy VCD spectroscopy ssNMR Polymorphism 

Abbreviations

2D-IR

Two-dimensional infrared

3D zf-TEDOR

Three-dimensional z-filtered transferred-echo double-resonance

A

Absorbance

AD

Alzheimer’s disease

AFM

Atomic force microscopy

AS

α-Synuclein

ATR-IR

Attenuated total reflection infrared

Amyloid-β

Cryo-EM

Cryo-electron microscopy

CSA

Chemical shift anisotropy

DARR

Dipolar-assisted rotational resonance

DFT

Density functional theory

DNP

Dynamic nuclear polarization

DQF-DRAWS

Double-quantum filtered dipolar recoupling in a windowless sequence

DRAWS

Dipolar recoupling in a windowless sequence

DUVRR

Deep-UV resonance Raman

HD

Huntington’s disease

IAPP

Islet amyloid polypeptide

IR

Infrared

MAS

Magic-angle spinning

PD

Parkinson’s disease

PITHIRDS

Constant-time recoupling with π-pulses lasting one-third of the MAS rotation period

PolyQ

Polyglutamine

PPII

Polyproline II helix

PrP

Prion protein

R2

Rotational resonance

REDOR

Rotational-echo double-resonance

ROA

Raman optical activity

SEM

Scanning electron microscopy

SERS

Surface-enhanced Raman spectroscopy

ssNMR

Solid-state nuclear magnetic resonance

STEM

Scanning transmission electron microscopy

STM

Scanning tunneling microscopy

TDC

Transition dipole coupling

TEDOR

Transferred-echo double-resonance

TEM

Transmission electron microscopy

TERS

Tip-enhanced Raman spectroscopy

TTR

Transthyretin

VCD

Vibrational circular dichroism

XRD

X-ray diffraction

Notes

Funding

The authors would like to acknowledge funding from the Natural Sciences and Engineering Research Council of Canada (NSERC), the Fonds de recherche du Québec - Nature et Technologies (FRQNT), the Regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines (PROTEO), the Centre de recherche sur les matériaux avancés (CERMA) and the Centre québécois sur les matériaux fonctionnels (CQMF). B.M. would like to acknowledge graduate scholarships from Bionano (NSERC) and PROTEO.

Compliance with ethical standards

Conflicts of interest

Benjamin Martial declares that he has no conflict of interest. Thierry Lefèvre declares that he has no conflict of interest. Michèle Auger declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Alzheimer A (1906) Über einen eigenartigen schweren Erkrankungsprozess der Hirnrinde. Neurologisches Centralblatt 23:1129–1136Google Scholar
  2. Amenabar I et al (2013) Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nat Commun 4:2890.  https://doi.org/10.1038/ncomms3890 PubMedPubMedCentralGoogle Scholar
  3. Ami D et al (2016) In situ characterization of protein aggregates in human tissues affected by light chain amyloidosis: a FTIR microspectroscopy study. Sci Rep 6:29096.  https://doi.org/10.1038/srep29096 PubMedPubMedCentralGoogle Scholar
  4. Andreasen M, Lorenzen N, Otzen D (2015) Interactions between misfolded protein oligomers and membranes: a central topic in neurodegenerative diseases? Biochim Biophys Acta Biomembr 1848:1897–1907.  https://doi.org/10.1016/j.bbamem.2015.01.018 Google Scholar
  5. Andrew ER, Clough S, Farnell LF, Gledhill TD, Roberts I (1966) Resonant rotational broadening of nuclear magnetic resonance spectra. Phys Lett 21:505–506.  https://doi.org/10.1016/0031-9163(66)91274-1 Google Scholar
  6. Ashburn TT, Auger M, Lansbury PT (1992) The structural basis of pancreatic amyloid formation: isotope-edited spectroscopy in the solid state. J Am Chem Soc 114:790–791.  https://doi.org/10.1021/ja00028a073 Google Scholar
  7. Astbury WT, Dickinson S, Bailey K (1935) The X-ray interpretation of denaturation and the structure of the seed globulins. Biochem J 29:2351–2360.  https://doi.org/10.1042/bj0292351 PubMedPubMedCentralGoogle Scholar
  8. Balbach JJ et al (2000) Amyloid fibril formation by Aβ16-22, a seven-residue fragment of the Alzheimer's β-amyloid peptide, and structural characterization by solid state NMR. Biochemistry 39:13748–13759.  https://doi.org/10.1021/bi0011330 PubMedGoogle Scholar
  9. Barron LD, Hecht L, Blanch EW, Bell AF (2000) Solution structure and dynamics of biomolecules from Raman optical activity. Prog Biophys Mol Biol 73:1–49.  https://doi.org/10.1016/S0079-6107(99)00017-6 PubMedGoogle Scholar
  10. Bates G (2003) Huntingtin aggregation and toxicity in Huntington’s disease. Lancet 361:1642–1644.  https://doi.org/10.1016/S0140-6736(03)13304-1 PubMedGoogle Scholar
  11. Bédard L, Lefèvre T, Morin-Michaud É, Auger M (2014) Besides fibrillization: putative role of the peptide fragment 71–82 on the structural and assembly behavior of α-synuclein. Biochemistry 53:6463–6472.  https://doi.org/10.1021/bi5008707 PubMedGoogle Scholar
  12. Benzinger TLS, Gregory DM, Burkoth TS, Miller-Auer H, Lynn DG, Botto RE, Meredith SC (1998) Propagating structure of Alzheimer’s β-amyloid(10–35) is parallel β-sheet with residues in exact register. Proc Natl Acad Sci U S A 95:13407–13412.  https://doi.org/10.1073/pnas.95.23.13407 PubMedPubMedCentralGoogle Scholar
  13. Berthelot K, Lecomte S, Géan J, Immel F, Cullin C (2010) A yeast toxic mutant of HET-s(218-289) prion displays alternative intermediates of amyloidogenesis. Biophys J 99:1239–1246.  https://doi.org/10.1016/j.bpj.2010.06.015 PubMedPubMedCentralGoogle Scholar
  14. Blanch EW, Gill AC, Rhie AGO, Hope J, Hecht L, Nielsen K, Barron LD (2004) Raman optical activity demonstrates poly(L-proline) II helix in the N-terminal region of the ovine prion protein: implications for function and misfunction. J Mol Biol 343:467–476.  https://doi.org/10.1016/j.jmb.2004.08.058 PubMedGoogle Scholar
  15. Bousset L et al (2013) Structural and functional characterization of two alpha-synuclein strains. Nat Commun 4:2575.  https://doi.org/10.1038/ncomms3575 PubMedPubMedCentralGoogle Scholar
  16. Chen J, Armstrong AH, Koehler AN, Hecht MH (2010) Small molecule microarrays enable the discovery of compounds that bind the Alzheimer’s Aβ peptide and reduce its cytotoxicity. J Am Chem Soc 132:17015–17022.  https://doi.org/10.1021/ja107552s PubMedPubMedCentralGoogle Scholar
  17. Chi Z, Chen XG, Holtz JSW, Asher SA (1998) UV resonance Raman-selective amide vibrational enhancement: quantitative methodology for determining protein secondary structure. Biochemistry 37:2854–2864.  https://doi.org/10.1021/bi971160z PubMedGoogle Scholar
  18. Collier TJ et al (2017) Nortriptyline inhibits aggregation and neurotoxicity of alpha-synuclein by enhancing reconfiguration of the monomeric form. Neurobiol Dis 106:191–204.  https://doi.org/10.1016/j.nbd.2017.07.007 PubMedGoogle Scholar
  19. Colvin MT et al (2016) Atomic resolution structure of monomorphic Aβ42 amyloid fibrils. J Am Chem Soc 138:9663–9674.  https://doi.org/10.1021/jacs.6b05129 PubMedPubMedCentralGoogle Scholar
  20. Conway KA, Harper JD, Lansbury PT (2000) Fibrils formed in vitro from α-synuclein and two mutant forms linked to Parkinson’s disease are typical amyloid. Biochemistry 39:2552–2563.  https://doi.org/10.1021/bi991447r PubMedGoogle Scholar
  21. Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302.  https://doi.org/10.1023/A:1008392405740 PubMedGoogle Scholar
  22. Debelouchina GT et al (2013) Higher order amyloid fibril structure by MAS NMR and DNP spectroscopy. J Am Chem Soc 135:19237–19247.  https://doi.org/10.1021/ja409050a PubMedPubMedCentralGoogle Scholar
  23. Decatur SM (2006) Elucidation of residue-level structure and dynamics of polypeptides via isotope-edited infrared spectroscopy. Acc Chem Res 39:169–175.  https://doi.org/10.1021/ar050135f PubMedGoogle Scholar
  24. Dornhaus R, Benner RE, Chang RK, Chabay I (1980) Surface plasmon contribution to SERS. Surf Sci 101:367–373.  https://doi.org/10.1016/0039-6028(80)90632-9 Google Scholar
  25. Dukor RK, Keiderling TA (1991) Reassessment of the random coil conformation: vibrational CD study of proline oligopeptides and related polypeptides. Biopolymers 31:1747–1761.  https://doi.org/10.1002/bip.360311409 PubMedGoogle Scholar
  26. Dunkelberger EB, Buchanan LE, Marek P, Cao P, Raleigh DP, Zanni MT (2012) Deamidation accelerates amyloid formation and alters amylin fiber structure. J Am Chem Soc 134:12658–12667.  https://doi.org/10.1021/ja3039486 PubMedPubMedCentralGoogle Scholar
  27. Dzwolak W, Loksztejn A, Smirnovas V (2006) New insights into the self-assembly of insulin amyloid fibrils: an H−D exchange FT-IR study. Biochemistry 45:8143–8151.  https://doi.org/10.1021/bi060341a PubMedGoogle Scholar
  28. Eisele YS, Monteiro C, Fearns C, Encalada SE, Wiseman RL, Powers ET, Kelly JW (2015) Targeting protein aggregation for the treatment of degenerative diseases. Nat Rev Drug Discov 14:759–780.  https://doi.org/10.1038/nrd4593 PubMedPubMedCentralGoogle Scholar
  29. Eisenberg D, Jucker M (2012) The amyloid state of proteins in human diseases. Cell 148:1188–1203.  https://doi.org/10.1016/j.cell.2012.02.022 PubMedPubMedCentralGoogle Scholar
  30. Eisenberg DS, Sawaya MR (2017) Structural studies of amyloid proteins at the molecular level. Annu Rev Biochem 86:69–95.  https://doi.org/10.1146/annurev-biochem-061516-045104 PubMedGoogle Scholar
  31. Eker F, Griebenow K, Schweitzer-Stenner R (2004) Aβ1-28 fragment of the amyloid peptide predominantly adopts a polyproline II conformation in an acidic solution. Biochemistry 43:6893–6898.  https://doi.org/10.1021/bi049542+ PubMedGoogle Scholar
  32. Fitzpatrick AWP et al (2013) Atomic structure and hierarchical assembly of a cross-β amyloid fibril. Proc Natl Acad Sci U S A 110:5468–5473.  https://doi.org/10.1073/pnas.1219476110 PubMedPubMedCentralGoogle Scholar
  33. Galvagnion C (2017) The role of lipids interacting with alpha-synuclein in the pathogenesis of Parkinson’s disease. J Parkinsons Dis 7:433–450.  https://doi.org/10.3233/jpd-171103 PubMedGoogle Scholar
  34. Gath J, Bousset L, Habenstein B, Melki R, Böckmann A, Meier BH (2014) Unlike twins: an NMR comparison of two α-synuclein polymorphs featuring different toxicity. PLoS One 9:e90659.  https://doi.org/10.1371/journal.pone.0090659 PubMedPubMedCentralGoogle Scholar
  35. Gelfand P, Smith RJ, Stavitski E, Borchelt DR, Miller LM (2015) Characterization of protein structural changes in living cells using time-lapsed FTIR imaging. Anal Chem 87:6025–6031.  https://doi.org/10.1021/acs.analchem.5b00371 PubMedPubMedCentralGoogle Scholar
  36. Giasson BI, Murray IVJ, Trojanowski JQ, Lee VM-Y (2001) A hydrophobic stretch of 12 amino acid residues in the middle of α-synuclein is essential for filament assembly. J Biol Chem 276:2380–2386.  https://doi.org/10.1074/jbc.M008919200 PubMedGoogle Scholar
  37. Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890.  https://doi.org/10.1016/S0006-291X(84)80190-4 PubMedGoogle Scholar
  38. Glenner GG, Eanes ED, Bladen HA, Linke RP, Termine JD (1974) β-Pleated sheet fibrils. A comparison of native amyloid with synthetic protein fibrils. J Histochem Cytochem 22:1141–1158.  https://doi.org/10.1177/22.12.1141 PubMedGoogle Scholar
  39. Goldsbury C et al (2011) Amyloid structure and assembly: insights from scanning transmission electron microscopy. J Struct Biol 173:1–13.  https://doi.org/10.1016/j.jsb.2010.09.018 PubMedGoogle Scholar
  40. Griffiths JM, Ashburn TT, Auger M, Costa PR, Griffin RG, Lansbury PT (1995) Rotational resonance solid-state NMR elucidates a structural model of pancreatic amyloid. J Am Chem Soc 117:3539–3546.  https://doi.org/10.1021/ja00117a023 Google Scholar
  41. Guenther EL et al (2018) Atomic-level evidence for packing and positional amyloid polymorphism by segment from TDP-43 RRM2. Nat Struct Mol Biol 25:311–319.  https://doi.org/10.1038/s41594-018-0045-5 PubMedGoogle Scholar
  42. Gullion T, Schaefer J (1989) Rotational-echo double-resonance NMR. J Magn Reson (1969) 81:196–200.  https://doi.org/10.1016/0022-2364(89)90280-1 Google Scholar
  43. Guo Y, Wang J (2012) Spectroscopic evidence for polymorphic aggregates formed by amyloid-β fragments. ChemPhysChem 13:3901–3908.  https://doi.org/10.1002/cphc.201200611 PubMedGoogle Scholar
  44. Halverson K, Fraser PE, Kirschner DA, Lansbury PT (1990) Molecular determinants of amyloid deposition in Alzheimer’s disease: conformational studies of synthetic β-protein fragments. Biochemistry 29:2639–2644.  https://doi.org/10.1021/bi00463a003 PubMedGoogle Scholar
  45. Halverson KJ, Sucholeiki I, Ashburn TT, Lansbury PT (1991) Location of β-sheet-forming sequences in amyloid proteins by FTIR. J Am Chem Soc 113:6701–6703.  https://doi.org/10.1021/ja00017a068 Google Scholar
  46. Henry S, Bercu NB, Bobo C, Cullin C, Molinari M, Lecomte S (2018) Interaction of Aβ1-42 peptide or their variant with model membrane of different composition probed by infrared nanospectroscopy. Nanoscale 10:936–940.  https://doi.org/10.1039/C7NR07489A PubMedGoogle Scholar
  47. Hing AW, Vega S, Schaefer J (1992) Transferred-echo double-resonance NMR. J Magn Reson (1969) 96:205–209.  https://doi.org/10.1016/0022-2364(92)90305-Q Google Scholar
  48. Hoyer W, Antony T, Cherny D, Heim G, Jovin TM, Subramaniam V (2002) Dependence of α-synuclein aggregate morphology on solution conditions. J Mol Biol 322:383–393.  https://doi.org/10.1016/S0022-2836(02)00775-1 PubMedGoogle Scholar
  49. Hoyer W, Grönwall C, Jonsson A, Ståhl S, Härd T (2008) Stabilization of a β-hairpin in monomeric Alzheimer’s amyloid-β peptide inhibits amyloid formation. Proc Natl Acad Sci U S A 105:5099–5104.  https://doi.org/10.1073/pnas.0711731105 PubMedPubMedCentralGoogle Scholar
  50. Jackson M, Mantsch HH (1995) The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit Rev Biochem Mol Biol 30:95–120.  https://doi.org/10.3109/10409239509085140 PubMedGoogle Scholar
  51. Jaroniec CP, Filip C, Griffin RG (2002a) 3D TEDOR NMR experiments for the simultaneous measurement of multiple carbon−nitrogen distances in uniformly 13C, 15N-labeled solids. J Am Chem Soc 124:10728–10742.  https://doi.org/10.1021/ja026385y PubMedGoogle Scholar
  52. Jaroniec CP, MacPhee CE, Astrof NS, Dobson CM, Griffin RG (2002b) Molecular conformation of a peptide fragment of transthyretin in an amyloid fibril. Proc Natl Acad Sci U S A 99:16748–16753.  https://doi.org/10.1073/pnas.252625999 PubMedPubMedCentralGoogle Scholar
  53. Jaroniec CP, MacPhee CE, Bajaj VS, McMahon MT, Dobson CM, Griffin RG (2004) High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy. Proc Natl Acad Sci U S A 101:711–716.  https://doi.org/10.1073/pnas.0304849101 PubMedPubMedCentralGoogle Scholar
  54. Jiménez JL, Nettleton EJ, Bouchard M, Robinson CV, Dobson CM, Saibil HR (2002) The protofilament structure of insulin amyloid fibrils. Proc Natl Acad Sci U S A 99:9196–9201.  https://doi.org/10.1073/pnas.142459399 PubMedPubMedCentralGoogle Scholar
  55. Johnson SM, Connelly S, Fearns C, Powers ET, Kelly JW (2012) The transthyretin amyloidoses: from delineating the molecular mechanism of aggregation linked to pathology to a regulatory-agency-approved drug. J Mol Biol 421:185–203.  https://doi.org/10.1016/j.jmb.2011.12.060 PubMedPubMedCentralGoogle Scholar
  56. Jones M et al (2009) An antibody to the aggregated synthetic prion protein peptide (PrP106–126) selectively recognizes disease-associated prion protein (PrPSc) from human brain specimens. Brain Pathol 19:293–302.  https://doi.org/10.1111/j.1750-3639.2008.00181.x PubMedGoogle Scholar
  57. Juszczyk P, Kołodziejczyk AS, Grzonka Z (2009) FTIR spectroscopic studies on aggregation process of the β-amyloid 11–28 fragment and its variants. J Pept Sci 15:23–29.  https://doi.org/10.1002/psc.1085 PubMedGoogle Scholar
  58. Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin 39:549–559.  https://doi.org/10.1111/j.1745-7270.2007.00320.x PubMedGoogle Scholar
  59. Krasnoslobodtsev AV, Deckert-Gaudig T, Zhang Y, Deckert V, Lyubchenko YL (2016) Polymorphism of amyloid fibrils formed by a peptide from the yeast prion protein Sup35: AFM and tip-enhanced Raman scattering studies. Ultramicroscopy 165:26–33.  https://doi.org/10.1016/j.ultramic.2016.03.011 PubMedPubMedCentralGoogle Scholar
  60. Krimm S, Bandekar J (1986) Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv Protein Chem 38:181–364.  https://doi.org/10.1016/S0065-3233(08)60528-8
  61. Kurouski D, Dukor RK, Lu X, Nafie LA, Lednev IK (2012) Spontaneous inter-conversion of insulin fibril chirality. Chem Commun 48:2837–2839.  https://doi.org/10.1039/c2cc16895b Google Scholar
  62. Kurouski D, Kar K, Wetzel R, Dukor RK, Lednev IK, Nafie LA (2013) Levels of supramolecular chirality of polyglutamine aggregates revealed by vibrational circular dichroism. FEBS Lett 587:1638–1643.  https://doi.org/10.1016/j.febslet.2013.03.038 PubMedPubMedCentralGoogle Scholar
  63. Kurouski D et al (2014) Is supramolecular filament chirality the underlying cause of major morphology differences in amyloid fibrils? J Am Chem Soc 136:2302–2312.  https://doi.org/10.1021/ja407583r PubMedPubMedCentralGoogle Scholar
  64. Kurouski D, Handen JD, Dukor RK, Nafie LA, Lednev IK (2015a) Supramolecular chirality in peptide microcrystals. Chem Commun 51:89–92.  https://doi.org/10.1039/C4CC05002A Google Scholar
  65. Kurouski D, Van Duyne RP, Lednev IK (2015b) Exploring the structure and formation mechanism of amyloid fibrils by Raman spectroscopy: a review. Analyst 140:4967–4980.  https://doi.org/10.1039/C5AN00342C PubMedGoogle Scholar
  66. Labbé J-F, Lefèvre T, Guay-Bégin A-A, Auger M (2013) Structure and membrane interactions of the β-amyloid fragment 25-35 as viewed using spectroscopic approaches. Phys Chem Chem Phys 15:7228–7239.  https://doi.org/10.1039/C3CP44623A PubMedGoogle Scholar
  67. Lansbury Jr PT et al (1995) Structural model for the β-amyloid fibril based on interstrand alignment of an antiparallel-sheet comprising a C-terminal peptide. Nat Struct Biol 2:990–998.  https://doi.org/10.1038/nsb1195-990 Google Scholar
  68. Lednev IK, Ermolenkov VV, He W, Xu M (2005) Deep-UV Raman spectrometer tunable between 193 and 205 nm for structural characterization of proteins. Anal Bioanal Chem 381:431–437.  https://doi.org/10.1007/s00216-004-2991-5 PubMedGoogle Scholar
  69. Lomont JP, Rich KL, Maj M, Ho J-J, Ostrander JS, Zanni MT (2018) Spectroscopic signature for stable β-amyloid fibrils versus β-sheet-rich oligomers. J Phys Chem B 122:144–153.  https://doi.org/10.1021/acs.jpcb.7b10765 PubMedGoogle Scholar
  70. Ma S et al (2007) Vibrational circular dichroism shows unusual sensitivity to protein fibril formation and development in solution. J Am Chem Soc 129:12364–12365.  https://doi.org/10.1021/ja074188z PubMedGoogle Scholar
  71. Madine J, Jack E, Stockley PG, Radford SE, Serpell LC, Middleton DA (2008) Structural insights into the polymorphism of amyloid-like fibrils formed by region 20−29 of amylin revealed by solid-state NMR and X-ray fiber diffraction. J Am Chem Soc 130:14990–15001.  https://doi.org/10.1021/ja802483d PubMedGoogle Scholar
  72. Maiti NC, Apetri MM, Zagorski MG, Carey PR, Anderson VE (2004) Raman spectroscopic characterization of secondary structure in natively unfolded proteins: α-synuclein. J Am Chem Soc 126:2399–2408.  https://doi.org/10.1021/ja0356176 PubMedGoogle Scholar
  73. Maly T et al (2008) Dynamic nuclear polarization at high magnetic fields. J Chem Phys 128:052211.  https://doi.org/10.1063/1.2833582 PubMedPubMedCentralGoogle Scholar
  74. Measey TJ, Schweitzer-Stenner R (2011) Vibrational circular dichroism as a probe of fibrillogenesis: the origin of the anomalous intensity enhancement of amyloid-like fibrils. J Am Chem Soc 133:1066–1076.  https://doi.org/10.1021/ja1089827 PubMedGoogle Scholar
  75. Meier BH, Riek R, Böckmann A (2017) Emerging structural understanding of amyloid fibrils by solid-state NMR. Trends Biochem Sci 42:777–787.  https://doi.org/10.1016/j.tibs.2017.08.001 PubMedGoogle Scholar
  76. Mikhonin AV, Bykov SV, Myshakina NS, Asher SA (2006) Peptide secondary structure folding reaction coordinate: correlation between UV Raman amide III frequency, Ψ Ramachandran angle, and hydrogen bonding. J Phys Chem B 110:1928–1943.  https://doi.org/10.1021/jp054593h PubMedGoogle Scholar
  77. Miura T, Hori-i A, Mototani H, Takeuchi H (1999) Raman spectroscopic study on the copper(II) binding mode of prion octapeptide and its pH dependence. Biochemistry 38:11560–11569.  https://doi.org/10.1021/bi9909389 PubMedGoogle Scholar
  78. Miura T, Suzuki K, Takeuchi H (2001) Binding of iron(III) to the single tyrosine residue of amyloid β-peptide probed by Raman spectroscopy. J Mol Struct 598:79–84.  https://doi.org/10.1016/S0022-2860(01)00807-9 Google Scholar
  79. Murphy RM (2007) Kinetics of amyloid formation and membrane interaction with amyloidogenic proteins. Biochim Biophys Acta Biomembr 1768:1923–1934.  https://doi.org/10.1016/j.bbamem.2006.12.014 Google Scholar
  80. Nielsen JT et al (2009) Unique identification of supramolecular structures in amyloid fibrils by solid-state NMR spectroscopy. Angew Chem Int Ed 48:2118–2121.  https://doi.org/10.1002/anie.200804198 Google Scholar
  81. Oladepo SA, Xiong K, Hong Z, Asher SA, Handen J, Lednev IK (2012) UV resonance Raman investigations of peptide and protein structure and dynamics. Chem Rev 112:2604–2628.  https://doi.org/10.1021/cr200198a PubMedPubMedCentralGoogle Scholar
  82. Parkinson J (2002) An essay on the shaking palsy. J Neuropsychiatr Clin Neurosci 14:223–236.  https://doi.org/10.1176/jnp.14.2.223 Google Scholar
  83. Paterlini MG, Freedman Teresa B, Nafie Laurence A (1986) Vibrational circular dichroism spectra of three conformationally distinct states and an unordered state of poly(L-lysine) in deuterated aqueous solution. Biopolymers 25:1751–1765.  https://doi.org/10.1002/bip.360250915 PubMedGoogle Scholar
  84. Paulite M, Blum C, Schmid T, Opilik L, Eyer K, Walker GC, Zenobi R (2013) Full spectroscopic tip-enhanced Raman imaging of single nanotapes formed from β-amyloid(1–40) peptide fragments. ACS Nano 7:911–920.  https://doi.org/10.1021/nn305677k PubMedGoogle Scholar
  85. Perálvarez-Marín A, Barth A, Gräslund A (2008) Time-resolved infrared spectroscopy of pH-induced aggregation of the Alzheimer Aβ1–28 peptide. J Mol Biol 379:589–596.  https://doi.org/10.1016/j.jmb.2008.04.014 PubMedGoogle Scholar
  86. Petkova AT, Leapman RD, Guo Z, Yau W-M, Mattson MP, Tycko R (2005) Self-propagating, molecular-level polymorphism in Alzheimer’s β-amyloid fibrils. Science 307:262–265.  https://doi.org/10.1126/science.1105850 PubMedGoogle Scholar
  87. Petty SA, Decatur SM (2005) Intersheet rearrangement of polypeptides during nucleation of β-sheet aggregates. Proc Natl Acad Sci U S A 102:14272–14277.  https://doi.org/10.1073/pnas.0502804102 PubMedPubMedCentralGoogle Scholar
  88. Polyanichko AM (2007) Vibrational circular dichroism and its applications to protein studies. In: Uversky VN, Permyakov EA (eds) Methods in protein structure and stability analysis: vibrational spectroscopy. Nova Science Publishers, Inc., New York, pp 267–302Google Scholar
  89. Popova LA, Kodali R, Wetzel R, Lednev IK (2010) Structural variations in the cross-β core of amyloid β fibrils revealed by deep UV resonance Raman spectroscopy. J Am Chem Soc 132:6324–6328.  https://doi.org/10.1021/ja909074j PubMedGoogle Scholar
  90. Prusiner SB, Groth DF, Bolton DC, Kent SB, Hood LE (1984) Purification and structural studies of a major scrapie prion protein. Cell 38:127–134.  https://doi.org/10.1016/0092-8674(84)90533-6 PubMedGoogle Scholar
  91. Punihaole D, Workman RJ, Hong Z, Madura JD, Asher SA (2016) Polyglutamine fibrils: new insights into antiparallel β-sheet conformational preference and side chain structure. J Phys Chem B 120:3012–3026.  https://doi.org/10.1021/acs.jpcb.5b11380 PubMedGoogle Scholar
  92. Ravotti F, Wälti MA, Güntert P, Riek R, Böckmann A, Meier BH (2016) Solid-state NMR sequential assignment of an amyloid-β(1–42) fibril polymorph. Biomol NMR Assign 10:269–276.  https://doi.org/10.1007/s12104-016-9682-y PubMedGoogle Scholar
  93. Rodriguez JA et al (2015) Structure of the toxic core of α-synuclein from invisible crystals. Nature 525:486–490.  https://doi.org/10.1038/nature15368 PubMedPubMedCentralGoogle Scholar
  94. Ross CA (2002) Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington’s disease and related disorders. Neuron 35:819–822.  https://doi.org/10.1016/S0896-6273(02)00872-3 PubMedGoogle Scholar
  95. Sarroukh R, Goormaghtigh E, Ruysschaert J-M, Raussens V (2013) ATR-FTIR: a “rejuvenated” tool to investigate amyloid proteins. Biochim Biophys Acta Biomembr 1828:2328–2338.  https://doi.org/10.1016/j.bbamem.2013.04.012 Google Scholar
  96. Schweitzer-Stenner R, Measey TJ (2010) Simulation of IR, Raman and VCD amide I band profiles of self-assembled peptides. Spectroscopy 24:25–36.  https://doi.org/10.3233/spe-2010-0407 Google Scholar
  97. Selkoe DJ (2015) Chapter 67—Alzheimer disease. In: Pascual JM (ed) Rosenberg’s molecular and genetic basis of neurological and psychiatric disease, 5th edn. Academic Press, Boston, pp 753–768Google Scholar
  98. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Molecular Medicine 8:595–608.  https://doi.org/10.15252/emmm.201606210 PubMedPubMedCentralGoogle Scholar
  99. Shanmugam G, Polavarapu PL (2004) Structure of Aβ(25-35) peptide in different environments. Biophys J 87:622–630.  https://doi.org/10.1529/biophysj.104.040907 PubMedPubMedCentralGoogle Scholar
  100. Shanmugam G, Polavarapu PL (2011) Isotope-assisted vibrational circular dichroism investigations of amyloid β peptide fragment, Aβ(16–22). J Struct Biol 176:212–219.  https://doi.org/10.1016/j.jsb.2011.08.004 PubMedGoogle Scholar
  101. Shanmugasundaram M, Kurouski D, Wan W, Stubbs G, Dukor RK, Nafie LA, Lednev IK (2015) Rapid filament supramolecular chirality reversal of HET-s (218–289) prion fibrils driven by pH elevation. J Phys Chem B 119:8521–8525.  https://doi.org/10.1021/acs.jpcb.5b04779 PubMedGoogle Scholar
  102. Sherrington R et al (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375:754–760.  https://doi.org/10.1038/375754a0 PubMedGoogle Scholar
  103. Smith AA, Ravotti F, Testori E, Cadalbert R, Ernst M, Böckmann A, Meier BH (2017) Partially-deuterated samples of HET-s(218–289) fibrils: assignment and deuterium isotope effect. J Biomol NMR 67:109–119.  https://doi.org/10.1007/s10858-016-0087-0 PubMedGoogle Scholar
  104. Soriaga AB, Sangwan S, Macdonald R, Sawaya MR, Eisenberg D (2016) Crystal structures of IAPP amyloidogenic segments reveal a novel packing motif of out-of-register beta sheets. J Phys Chem B 120:5810–5816.  https://doi.org/10.1021/acs.jpcb.5b09981 PubMedPubMedCentralGoogle Scholar
  105. Spencer RGS, Halverson KJ, Auger M, McDermott AE, Griffin RG, Lansbury PT (1991) An unusual peptide conformation may precipitate amyloid formation in Alzheimer’s disease: application of solid-state NMR to the determination of protein secondary structure. Biochemistry 30:10382–10387.  https://doi.org/10.1021/bi00107a004 PubMedGoogle Scholar
  106. Stanek J et al (2016) NMR spectroscopic assignment of backbone and side-chain protons in fully protonated proteins: microcrystals, sedimented assemblies, and amyloid fibrils. Angew Chem Int Ed 55:15504–15509.  https://doi.org/10.1002/anie.201607084 Google Scholar
  107. Stefani M (2012) Structural features and cytotoxicity of amyloid oligomers: implications in Alzheimer’s disease and other diseases with amyloid deposits. Prog Neurobiol 99:226–245.  https://doi.org/10.1016/j.pneurobio.2012.03.002 PubMedGoogle Scholar
  108. Surewicz WK, Mantsch HH, Chapman D (1993) Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry 32:389–394.  https://doi.org/10.1021/bi00053a001 PubMedGoogle Scholar
  109. Tagliavini F et al (1993) Synthetic peptides homologous to prion protein residues 106-147 form amyloid-like fibrils in vitro. Proc Natl Acad Sci U S A 90:9678–9682.  https://doi.org/10.1073/pnas.90.20.9678 PubMedPubMedCentralGoogle Scholar
  110. Takegoshi K, Nakamura S, Terao T (2001) 13C–1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344:631–637.  https://doi.org/10.1016/S0009-2614(01)00791-6 Google Scholar
  111. Termine JD, Eanes ED, Ein D, Glenner GG (1972) Infrared spectroscopy of human amyloid fibrils and immunoglobulin proteins. Biopolymers 11:1103–1113.  https://doi.org/10.1002/bip.1972.360110512 PubMedGoogle Scholar
  112. Tycko R (2006) Molecular structure of amyloid fibrils: insights from solid-state NMR. Q Rev Biophys 39:1–55.  https://doi.org/10.1017/S0033583506004173 PubMedGoogle Scholar
  113. Tycko R (2007) Symmetry-based constant-time homonuclear dipolar recoupling in solid state NMR. J Chem Phys 126:064506.  https://doi.org/10.1063/1.2437194 PubMedGoogle Scholar
  114. Tycko R (2015) Amyloid polymorphism: structural basis and neurobiological relevance. Neuron 86:632–645.  https://doi.org/10.1016/j.neuron.2015.03.017 PubMedPubMedCentralGoogle Scholar
  115. Usov I, Adamcik J, Mezzenga R (2013) Polymorphism complexity and handedness inversion in serum albumin amyloid fibrils. ACS Nano 7:10465–10474.  https://doi.org/10.1021/nn404886k PubMedGoogle Scholar
  116. Uversky VN, Li J, Fink AL (2001) Evidence for a partially folded intermediate in α-synuclein fibril formation. J Biol Chem 276:10737–10744.  https://doi.org/10.1074/jbc.M010907200 PubMedGoogle Scholar
  117. Valente EM et al (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304:1158–1160.  https://doi.org/10.1126/science.1096284 PubMedGoogle Scholar
  118. van der Wel PCA, Lewandowski JR, Griffin RG (2010) Structural characterization of GNNQQNY amyloid fibrils by magic angle spinning NMR. Biochemistry 49:9457–9469.  https://doi.org/10.1021/bi100077x PubMedPubMedCentralGoogle Scholar
  119. Van Melckebeke H, Wasmer C, Lange A, AB E, Loquet A, Böckmann A, Meier BH (2010) Atomic-resolution three-dimensional structure of HET-s(218−289) amyloid fibrils by solid-state NMR spectroscopy. J Am Chem Soc 132:13765–13775.  https://doi.org/10.1021/ja104213j PubMedGoogle Scholar
  120. Viles JH (2012) Metal ions and amyloid fiber formation in neurodegenerative diseases. Copper, zinc and iron in Alzheimer’s, Parkinson’s and prion diseases. Coord Chem Rev 256:2271–2284.  https://doi.org/10.1016/j.ccr.2012.05.003 Google Scholar
  121. Volpatti LR, Vendruscolo M, Dobson CM, Knowles TPJ (2013) A clear view of polymorphism, twist, and chirality in amyloid fibril formation. ACS Nano 7:10443–10448.  https://doi.org/10.1021/nn406121w PubMedGoogle Scholar
  122. Walker FO (2007) Huntington’s disease. Lancet 369:218–228.  https://doi.org/10.1016/S0140-6736(07)60111-1 PubMedGoogle Scholar
  123. Walsh P, Simonetti K, Sharpe S (2009) Core structure of amyloid fibrils formed by residues 106–126 of the human prion protein. Structure 17:417–426.  https://doi.org/10.1016/j.str.2008.12.018 PubMedGoogle Scholar
  124. Wälti MA et al (2016) Atomic-resolution structure of a disease-relevant Aβ(1–42) amyloid fibril. Proc Natl Acad Sci U S A 113:E4976–E4984.  https://doi.org/10.1073/pnas.1600749113 PubMedPubMedCentralGoogle Scholar
  125. Welch WRW, Keiderling TA, Kubelka J (2013a) Structural analyses of experimental 13C edited amide I’ IR and VCD for peptide β-sheet aggregates and fibrils using DFT-based spectral simulations. J Phys Chem B 117:10359–10369.  https://doi.org/10.1021/jp405613r PubMedGoogle Scholar
  126. Welch WRW, Kubelka J, Keiderling TA (2013b) Infrared, vibrational circular dichroism, and Raman spectral simulations for β-sheet structures with various isotopic labels, interstrand, and stacking arrangements using density functional theory. J Phys Chem B 117:10343–10358.  https://doi.org/10.1021/jp4056126 PubMedGoogle Scholar
  127. Wiltzius JJW, Sievers SA, Sawaya MR, Cascio D, Popov D, Riekel C, Eisenberg D (2008) Atomic structure of the cross-β spine of islet amyloid polypeptide (amylin). Protein Sci 17:1467–1474.  https://doi.org/10.1110/ps.036509.108 PubMedPubMedCentralGoogle Scholar
  128. Wishart DS, Sykes BD (1994) The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 4:171–180.  https://doi.org/10.1007/BF00175245 PubMedGoogle Scholar
  129. Xiao Y et al (2015) Aβ(1–42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer’s disease. Nat Struct Mol Biol 22:499–505.  https://doi.org/10.1038/nsmb.2991 PubMedPubMedCentralGoogle Scholar
  130. Yau J, Sharpe S (2012) Structures of amyloid fibrils formed by the prion protein derived peptides PrP(244–249) and PrP(245–250). J Struct Biol 180:290–302.  https://doi.org/10.1016/j.jsb.2012.08.002 PubMedGoogle Scholar
  131. Yugay D et al (2016) Copper ion binding site in β-amyloid peptide. Nano Lett 16:6282–6289.  https://doi.org/10.1021/acs.nanolett.6b02590 PubMedGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF)Université LavalQuébecCanada

Personalised recommendations