Biophysical Reviews

, Volume 10, Issue 2, pp 571–581 | Cite as

Overview of the mechanism of cytoskeletal motors based on structure

Review
  • 415 Downloads

Abstract

In the last two decades, a wealth of structural and functional knowledge has been obtained for the three major cytoskeletal motor proteins, myosin, kinesin and dynein, which we review here. The cytoskeletal motor proteins myosin and kinesin are structurally similar in the core architecture of their motor domains and have similar force-producing mechanisms that are coupled with the chemical cycles of ATP binding, hydrolysis, Pi release and subsequent ADP release. The force is generated through conformational changes in the motor domain during Pi release and ATP binding in myosin and kinesin, respectively, and then converted into the rotation of the lever arm or neck linker (referred to as a power stroke) through the common structural pathways. On the other hand, the dynein cytoskeletal motor is an AAA+ protein and has a different structure and power stroke mechanism from those of myosins and kinesins. The linker protruding from the AAA+ ring of dynein swings according to the ATPase states, which, presumably, generates force to carry cargos within a cell. The communication mechanism between the track-binding and ATPase domains of dynein is unique because the two helices that presumably slide with respect to each other work as coordinators for these domains. Details of the mechanism underlying the power stroke and interdomain communication were revealed through recent progress in the structural studies of myosin, kinesin and dynein.

Keywords

Cytoskeletal motor Myosin Kinesin Dynein Structure Force generation 

Notes

Compliance with ethical standards

Conflict of interest

Yusuke Kato declares that he has no conflict of interest. Takuya Miyakawa declares that he has no conflict of interest. Masaru Tanokura declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the authors.

Open access

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) as well as a link to the Creative Commons license, and indicate if changes were made.

References

  1. Atherton J, Farabella I, Yu IM, Rosenfeld SS, Houdusse A, Topf M, Moores CA (2014) Conserved mechanisms of microtubule-stimulated ADP release, ATP binding, and force generation in transport kinesins. Elife 3:e03680CrossRefPubMedPubMedCentralGoogle Scholar
  2. Banga I, Szent-Györgyi A (1941–1942) Preparation and properties of myosin A and B. In: Szent-Györgyi A (ed) Studies from the Institute of Medical Chemistry—University of Szeged, vol. 1. S. Karger AG, Basel, pp 5–15Google Scholar
  3. Borisy GG, Taylor EW (1967) The mechanism of action of colchicine. Binding of colchincine-3H to cellular protein. J Cell Biol 34:525–533CrossRefPubMedPubMedCentralGoogle Scholar
  4. Brady ST (1985) A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317:73–75CrossRefPubMedGoogle Scholar
  5. Burgess SA, Walker ML, Sakakibara H, Knight PJ, Oiwa K (2003) Dynein structure and power stroke. Nature 421:715–718CrossRefPubMedGoogle Scholar
  6. Bustamante C, Chemla YR, Forde NR, Izhaky D (2004) Mechanical processes in biochemistry. Annu Rev Biochem 73:705–748CrossRefPubMedGoogle Scholar
  7. Cao L, Wang W, Jiang Q, Wang C, Knossow M, Gigant B (2014) The structure of apo-kinesin bound to tubulin links the nucleotide cycle to movement. Nat Commun 5:5364CrossRefPubMedGoogle Scholar
  8. Carter AP, Garbarino JE, Wilson-Kubalek EM, Shipley WE, Cho C, Milligan RA, Vale RD, Gibbons IR (2008) Structure and functional role of dynein’s microtubule-binding domain. Science 322:1691–1695CrossRefPubMedPubMedCentralGoogle Scholar
  9. Carter AP, Cho C, Jin L, Vale RD (2011) Crystal structure of the dynein motor domain. Science 331:1159–1165CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cecchini M, Alexeev Y, Karplus M (2010) Pi release from myosin: a simulation analysis of possible pathways. Structure 18:458–470CrossRefPubMedPubMedCentralGoogle Scholar
  11. Coureux PD, Wells AL, Ménétrey J, Yengo CM, Morris CA, Sweeney HL, Houdusse A (2003) A structural state of the myosin V motor without bound nucleotide. Nature 425:419–423CrossRefPubMedGoogle Scholar
  12. Dominguez R, Freyzon Y, Trybus KM, Cohen C (1998) Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 94:559–571CrossRefPubMedGoogle Scholar
  13. Endres NF, Yoshioka C, Milligan RA, Vale RD (2006) A lever-arm rotation drives motility of the minus-end-directed kinesin Ncd. Nature 439:875–878CrossRefPubMedGoogle Scholar
  14. Engelhardt WA, Ljubimowa MN (1939) Myosin and adenosine triphosphatase. Nature 144:668–669CrossRefGoogle Scholar
  15. Finer JT, Simmons RM, Spudich JA (1994) Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368:113–119CrossRefPubMedGoogle Scholar
  16. Fischer S, Windshügel B, Horak D, Holmes KC, Smith JC (2005) Structural mechanism of the recovery stroke in the myosin molecular motor. Proc Natl Acad Sci U S A 102:6873–6878CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fliegauf M, Benzing T, Omran H (2007) When cilia go bad: cilia defects and ciliopathies. Nat Rev Mol Cell Biol 8:880–893CrossRefPubMedGoogle Scholar
  18. Gee MA, Heuser JE, Vallee RB (1997) An extended microtubule-binding structure within the dynein motor domain. Nature 390:636–639CrossRefPubMedGoogle Scholar
  19. Gennerich A, Carter AP, Reck-Peterson SL, Vale RD (2007) Force-induced bidirectional stepping of cytoplasmic dynein. Cell 131:952–965CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gibbons IR, Rowe AJ (1965) Dynein: a protein with adenosine triphosphatase activity from cilia. Science 149:424–426CrossRefPubMedGoogle Scholar
  21. Gibbons IR, Garbarino JE, Tan CE, Reck-Peterson SL, Vale RD, Carter AP (2005) The affinity of the dynein microtubule-binding domain is modulated by the conformation of its coiled-coil stalk. J Biol Chem 280:23960–23965CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gigant B, Wang W, Dreier B, Jiang Q, Pecqueur L, Plückthun A, Wang C, Knossow M (2013) Structure of a kinesin–tubulin complex and implications for kinesin motility. Nat Struct Mol Biol 20:1001–1007CrossRefPubMedGoogle Scholar
  23. Greenberg MJ, Shuman H, Ostap EM (2014) Inherent force-dependent properties of β-cardiac myosin contribute to the force–velocity relationship of cardiac muscle. Biophys J 107:L41–L44CrossRefPubMedPubMedCentralGoogle Scholar
  24. Himmel DM, Gourinath S, Reshetnikova L, Shen Y, Szent-Györgyi AG, Cohen C (2002) Crystallographic findings on the internally uncoupled and near-rigor states of myosin: further insights into the mechanics of the motor. Proc Natl Acad Sci U S A 99:12645–12650CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hirokawa N (1998) Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279:519–526CrossRefPubMedGoogle Scholar
  26. Hirokawa N, Takemura R (2005) Molecular motors and mechanisms of directional transport in neurons. Nat Rev Neurosci 6:201–214CrossRefPubMedGoogle Scholar
  27. Hirose K, Lockhart A, Cross RA, Amos LA (1995) Nucleotide-dependent angular change in kinesin motor domain bound to tubulin. Nature 376:277–279CrossRefPubMedGoogle Scholar
  28. Hirose K, Akimaru E, Akiba T, Endow SA, Amos LA (2006) Large conformational changes in a kinesin motor catalyzed by interaction with microtubules. Mol Cell 23:913–923CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hoenger A, Sablin EP, Vale RD, Fletterick RJ, Milligan RA (1995) Three-dimensional structure of a tubulin–motor–protein complex. Nature 376:271–274CrossRefPubMedGoogle Scholar
  30. Houdusse A, Szent-Györgyi AG, Cohen C (2000) Three conformational states of scallop myosin S1. Proc Natl Acad Sci U S A 97:11238–11243CrossRefPubMedPubMedCentralGoogle Scholar
  31. Howard J, Hudspeth AJ, Vale RD (1989) Movement of microtubules by single kinesin molecules. Nature 342:154–158CrossRefPubMedGoogle Scholar
  32. Huxley H, Hanson J (1954) Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173:973–976CrossRefPubMedGoogle Scholar
  33. Huxley AF, Niedergerke R (1954) Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature 173:971–973CrossRefPubMedGoogle Scholar
  34. Imai H, Shima T, Sutoh K, Walker ML, Knight PJ, Kon T, Burgess SA (2015) Direct observation shows superposition and large scale flexibility within cytoplasmic dynein motors moving along microtubules. Nat Commun 6:8179CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kamiya R (2002) Functional diversity of axonemal dyneins as studied in Chlamydomonas mutants. Int Rev Cytol 219:115–155CrossRefPubMedGoogle Scholar
  36. Kato YS, Yagi T, Harris SA, Ohki SY, Yura K, Shimizu Y, Honda S, Kamiya R, Burgess SA, Tanokura M (2014) Structure of the microtubule-binding domain of flagellar dynein. Structure 22:1628–1638CrossRefPubMedGoogle Scholar
  37. Kikkawa M, Hirokawa N (2006) High-resolution cryo-EM maps show the nucleotide binding pocket of KIF1A in open and closed conformations. EMBO J 25:4187–4194CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kikkawa M, Ishikawa T, Wakabayashi T, Hirokawa N (1995) Three-dimensional structure of the kinesin head–microtubule complex. Nature 376:274–277CrossRefPubMedGoogle Scholar
  39. Kikkawa M, Sablin EP, Okada Y, Yajima H, Fletterick RJ, Hirokawa N (2001) Switch-based mechanism of kinesin motors. Nature 411:439–445CrossRefPubMedGoogle Scholar
  40. Kon T, Mogami T, Ohkura R, Nishiura M, Sutoh K (2005) ATP hydrolysis cycle-dependent tail motions in cytoplasmic dynein. Nat Struct Mol Biol 12:513–519CrossRefPubMedGoogle Scholar
  41. Kon T, Oyama T, Shimo-Kon R, Imamula K, Shima T, Sutoh K, Kurisu G (2012) The 2.8 Å crystal structure of the dynein motor domain. Nature 484:345–350CrossRefPubMedGoogle Scholar
  42. Kozielski F, Sack S, Marx A, Thormählen M, Schönbrunn E, Biou V, Thompson A, Mandelkow EM, Mandelkow E (1997) The crystal structure of dimeric kinesin and implications for microtubule-dependent motility. Cell 91:985–994CrossRefPubMedGoogle Scholar
  43. Krendel M, Mooseker MS (2005) Myosins: tails (and heads) of functional diversity. Physiol 20:239–251CrossRefGoogle Scholar
  44. Kühner S, Fischer S (2011) Structural mechanism of the ATP-induced dissociation of rigor myosin from actin. Proc Natl Acad Sci U S A 108:7793–7798CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kull FJ, Endow SA (2013) Force generation by kinesin and myosin cytoskeletal motor proteins. J Cell Sci 126:9–19CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kull FJ, Sablin EP, Lau R, Fletterick RJ, Vale RD (1996) Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 380:550–555CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lawrence CJ, Dawe RK, Christie KR, Cleveland DW, Dawson SC, Endow SA, Goldstein LS, Goodson HV, Hirokawa N, Howard J, Malmberg RL, McIntosh JR, Miki H, Mitchison TJ, Okada Y, Reddy AS, Saxton WM, Schliwa M, Scholey JM, Vale RD, Walczak CE, Wordeman L (2004) A standardized kinesin nomenclature. J Cell Biol 167:19–22CrossRefPubMedPubMedCentralGoogle Scholar
  48. Levy JR, Holzbaur EL (2006) Cytoplasmic dynein/dynactin function and dysfunction in motor neurons. Int J Dev Neurosci 24:103–111CrossRefPubMedGoogle Scholar
  49. Makino T, Morii H, Shimizu T, Arisaka F, Kato Y, Nagata K, Tanokura M (2007) Reversible and irreversible coiled coils in the stalk domain of ncd motor protein. Biochemistry 46:9523–9532CrossRefPubMedGoogle Scholar
  50. McDonald HB, Stewart RJ, Goldstein LS (1990) The kinesin-like ncd protein of drosophila is a minus end-directed microtubule motor. Cell 63:1159–1165CrossRefPubMedGoogle Scholar
  51. Mermall V, Post PL, Mooseker MS (1998) Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science 279:527–533CrossRefPubMedGoogle Scholar
  52. Mizuno N, Narita A, Kon T, Sutoh K, Kikkawa M (2007) Three-dimensional structure of cytoplasmic dynein bound to microtubules. Proc Natl Acad Sci U S A 104:20832–20837CrossRefPubMedPubMedCentralGoogle Scholar
  53. Neuwald AF, Aravind L, Spouge JL, Koonin EV (1999) AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9:27–43PubMedGoogle Scholar
  54. Odronitz F, Kollmar M (2007) Drawing the tree of eukaryotic life based on the analysis of 2,269 manually annotated myosins from 328 species. Genome Biol 8:R196CrossRefPubMedPubMedCentralGoogle Scholar
  55. Parke CL, Wojcik EJ, Kim S, Worthylake DK (2010) ATP hydrolysis in Eg5 kinesin involves a catalytic two-water mechanism. J Biol Chem 285:5859–5867CrossRefPubMedGoogle Scholar
  56. Popchock AR, Tseng KF, Wang P, Karplus PA, Xiang X, Qiu W (2017) The mitotic kinesin-14 KlpA contains a context-dependent directionality switch. Nat Commun 8:13999CrossRefPubMedPubMedCentralGoogle Scholar
  57. Rayment I, Rypniewski WR, Schmidt-Bäse K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM (1993a) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261:50–58CrossRefPubMedGoogle Scholar
  58. Rayment I, Holden HM, Whittaker M, Yohn CB, Lorenz M, Holmes KC, Milligan RA (1993b) Structure of the actin–myosin complex and its implications for muscle contraction. Science 261:58–65CrossRefPubMedGoogle Scholar
  59. Redwine WB, Hernández-López R, Zou S, Huang J, Reck-Peterson SL, Leschziner AE (2012) Structural basis for microtubule binding and release by dynein. Science 337:1532–1536CrossRefPubMedPubMedCentralGoogle Scholar
  60. Reubold TF, Eschenburg S, Becker A, Kull FJ, Manstein DJ (2003) A structural model for actin-induced nucleotide release in myosin. Nat Struct Mol Biol 10:826–830CrossRefGoogle Scholar
  61. Rice S, Lin AW, Safer D, Hart CL, Naber N, Carragher BO, Cain SM, Pechatnikova E, Wilson-Kubalek EM, Whittaker M, Pate E, Cooke R, Taylor EW, Milligan RA, Vale RD (1999) A structural change in the kinesin motor protein that drives motility. Nature 402:778–784CrossRefPubMedGoogle Scholar
  62. Roberts AJ, Numata N, Walker ML, Kato YS, Malkova B, Kon T, Ohkura R, Arisaka F, Knight PJ, Sutoh K, Burgess SA (2009) AAA+ ring and linker swing mechanism in the dynein motor. Cell 136:485–495CrossRefPubMedPubMedCentralGoogle Scholar
  63. Roberts AJ, Kon T, Knight PJ, Sutoh K, Burgess SA (2013) Functions and mechanics of dynein motor proteins. Nat Rev Mol Cell Biol 14:713–726CrossRefPubMedPubMedCentralGoogle Scholar
  64. Sablin EP, Kull FJ, Cooke R, Vale RD, Fletterick RJ (1996) Crystal structure of the motor domain of the kinesin-related motor ncd. Nature 380:555–559CrossRefPubMedGoogle Scholar
  65. Sakakibara H, Kojima H, Sakai Y, Katayama E, Oiwa K (1999) Inner-arm dynein c of Chlamydomonas flagella is a single-headed processive motor. Nature 400:586–590CrossRefPubMedGoogle Scholar
  66. Schmidt H, Gleave ES, Carter AP (2012) Insights into dynein motor domain function from a 3.3-Å crystal structure. Nat Struct Mol Biol 19:492–497CrossRefPubMedPubMedCentralGoogle Scholar
  67. Schmidt H, Zalyte R, Urnavicius L, Carter AP (2015) Structure of human cytoplasmic dynein-2 primed for its power stroke. Nature 518:435–438CrossRefPubMedGoogle Scholar
  68. Schuh M (2011) An actin-dependent mechanism for long-range vesicle transport. Nat Cell Biol 13:1431–1436CrossRefPubMedPubMedCentralGoogle Scholar
  69. Shang Z, Zhou K, Xu C, Csencsits R, Cochran JC, Sindelar CV (2014) High-resolution structures of kinesin on microtubules provide a basis for nucleotide-gated force-generation. Elife 3:e04686CrossRefPubMedPubMedCentralGoogle Scholar
  70. She ZY, Yang WX (2017) Molecular mechanisms of kinesin-14 motors in spindle assembly and chromosome segregation. J Cell Sci 130:2097–2110CrossRefPubMedGoogle Scholar
  71. Straub FB (1943) Actin, II. Stud Inst Med Chem Univ Szeged III:23–37Google Scholar
  72. Sugi H, Minoda H, Inayoshi Y, Yumoto F, Miyakawa T, Miyauchi Y, Tanokura M, Akimoto T, Kobayashi T, Chaen S, Sugiura S (2008) Direct demonstration of the cross-bridge recovery stroke in muscle thick filaments in aqueous solution by using the hydration chamber. Proc Natl Acad Sci U S A 108:17396–17401CrossRefGoogle Scholar
  73. Thiede C, Fridman V, Gerson-Gurwitz A, Gheber L, Schmidt CF (2012) Regulation of bi-directional movement of single kinesin-5 Cin8 molecules. BioArchitecture 2:70–74CrossRefPubMedPubMedCentralGoogle Scholar
  74. Uchimura S, Fujii T, Takazaki H, Ayukawa R, Nishikawa Y, Minoura I, Hachikubo Y, Kurisu G, Sutoh K, Kon T, Namba K, Muto E (2015) A flipped ion pair at the dynein–microtubule interface is critical for dynein motility and ATPase activation. J Cell Biol 208:211–222CrossRefPubMedPubMedCentralGoogle Scholar
  75. Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42:39–50CrossRefPubMedPubMedCentralGoogle Scholar
  76. Veigel C, Schmitz S, Wang F, Sellers JR (2005) Load-dependent kinetics of myosin-V can explain its high processivity. Nat Cell Biol 7:861–869CrossRefPubMedGoogle Scholar
  77. Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294:1299–1304CrossRefPubMedGoogle Scholar
  78. Walker RA, Salmon ED, Endow SA (1990) The Drosophila claret segregation protein is a minus-end directed motor molecule. Nature 347:780–782CrossRefPubMedGoogle Scholar
  79. Weber KL, Sokac AM, Berg JS, Cheney RE, Bement WM (2004) A microtubule-binding myosin required for nuclear anchoring and spindle assembly. Nature 431:325–329CrossRefPubMedGoogle Scholar
  80. Yamagishi M, Shigematsu H, Yokoyama T, Kikkawa M, Sugawa M, Aoki M, Shirouzu M, Yajima J, Nitta R (2016) Structural basis of backwards motion in kinesin-1-kinesin-14 chimera: implication for kinesin-14 motility. Structure 24:1322–1334CrossRefPubMedGoogle Scholar
  81. Yang Y, Gourinath S, Kovács M, Nyitray L, Reutzel R, Himmel DM, O’Neall-Hennessey E, Reshetnikova L, Szent-Györgyi AG, Brown JH, Cohen C (2007) Rigor-like structures from muscle myosins reveal key mechanical elements in the transduction pathways of this allosteric motor. Structure 15:553–564CrossRefPubMedGoogle Scholar
  82. Zhang P, Dai W, Hahn J, Gilbert SP (2015) Drosophila Ncd reveals an evolutionarily conserved powerstroke mechanism for homodimeric and heterodimeric kinesin-14s. Proc Natl Acad Sci U S A 112:6359–6364CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute for Enzyme ResearchTokushima UniversityTokushimaJapan
  2. 2.Laboratory of Basic Science on Healthy Longevity, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan

Personalised recommendations