Advertisement

Biophysical Reviews

, Volume 9, Issue 6, pp 941–958 | Cite as

Molecular simulations of cellular processes

  • Fabio TrovatoEmail author
  • Giordano Fumagalli
Review

Abstract

It is, nowadays, possible to simulate biological processes in conditions that mimic the different cellular compartments. Several groups have performed these calculations using molecular models that vary in performance and accuracy. In many cases, the atomistic degrees of freedom have been eliminated, sacrificing both structural complexity and chemical specificity to be able to explore slow processes. In this review, we will discuss the insights gained from computer simulations on macromolecule diffusion, nuclear body formation, and processes involving the genetic material inside cell-mimicking spaces. We will also discuss the challenges to generate new models suitable for the simulations of biological processes on a cell scale and for cell-cycle-long times, including non-equilibrium events such as the co-translational folding, misfolding, and aggregation of proteins. A prominent role will be played by the wise choice of the structural simplifications and, simultaneously, of a relatively complex energetic description. These challenging tasks will rely on the integration of experimental and computational methods, achieved through the application of efficient algorithms.

Graphical abstract

Keywords

Macromolecular crowding Coarse-graining Molecular dynamics Stochastic processes Diffusion in the cytoplasm Sub-diffusion Nuclear bodies Genetic material Facilitated diffusion Soft interactions Hydrodynamic interactions Integrative modeling 

Notes

Compliance with ethical standards

Conflict of interest

Fabio Trovato declares that he has no conflict of interest. Giordano Fumagalli declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Acharya S, Nandi MK, Mandal A, Sarkar S, Bhattacharyya SM (2015) Diffusion of small solute particles in viscous liquids: cage diffusion, a result of decoupling of solute–solvent dynamics, leads to amplification of solute diffusion. J Phys Chem B 119:11169–11175.  https://doi.org/10.1021/acs.jpcb.5b03034 CrossRefPubMedGoogle Scholar
  2. Ando T, Skolnick J (2010) Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion. Proc Natl Acad Sci U S A 107:18457–18462.  https://doi.org/10.1073/pnas.1011354107 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ando T, Yu I, Feig M, Sugita Y (2016) Thermodynamics of macromolecular association in heterogeneous crowding environments: theoretical and simulation studies with a simplified model. J Phys Chem B 120:11856–11865.  https://doi.org/10.1021/acs.jpcb.6b06243 CrossRefPubMedGoogle Scholar
  4. Andrews SS (2017) Smoldyn: particle-based simulation with rule-based modeling, improved molecular interaction and a library interface. Bioinformatics 33:710–717.  https://doi.org/10.1093/bioinformatics/btw700 CrossRefPubMedGoogle Scholar
  5. Argudo D, Bethel NP, Marcoline FV, Grabe M (2016) Continuum descriptions of membranes and their interaction with proteins: towards chemically accurate models. Biochim Biophys Acta Biomembr 1858:1619–1634.  https://doi.org/10.1016/j.bbamem.2016.02.003 CrossRefGoogle Scholar
  6. Asakura S, Oosawa F (1954) On interaction between two bodies immersed in a solution of macromolecules. J Chem Phys 22:1255–1256.  https://doi.org/10.1063/1.1740347 CrossRefGoogle Scholar
  7. Avila CL, Drechsel NJD, Alcántara R, Villà-Freixa J (2011) Multiscale molecular dynamics of protein aggregation. Curr Protein Pept Sci 12:221–234.  https://doi.org/10.2174/138920311795860205 CrossRefPubMedGoogle Scholar
  8. Ayton GS, Noid WG, Voth GA (2007) Multiscale modeling of biomolecular systems: in serial and in parallel. Curr Opin Struct Biol 17:192–198.  https://doi.org/10.1016/j.sbi.2007.03.004 CrossRefPubMedGoogle Scholar
  9. Azimi M, Jamali Y, Mofrad MRK (2011) Accounting for diffusion in agent based models of reaction-diffusion systems with application to cytoskeletal diffusion. PLoS One 6:e25306.  https://doi.org/10.1371/journal.pone.0025306 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bai J, Liu M, Pielak GJ, Li C (2017) Macromolecular and small molecular crowding have similar effects on α-synuclein structure. ChemPhysChem 18:55–58.  https://doi.org/10.1002/cphc.201601097 CrossRefPubMedGoogle Scholar
  11. Bakshi S, Choi H, Weisshaar JC (2015) The spatial biology of transcription and translation in rapidly growing Escherichia coli. Front Microbiol 6:636.  https://doi.org/10.3389/fmicb.2015.00636 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Balbo J, Mereghetti P, Herten D-P, Wade RC (2013) The shape of protein crowders is a major determinant of protein diffusion. Biophys J 104:1576–1584.  https://doi.org/10.1016/j.bpj.2013.02.041 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Banani SF, Lee HO, Hyman AA, Rosen MK (2017) Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 18:285–298.  https://doi.org/10.1038/nrm.2017.7 CrossRefPubMedGoogle Scholar
  14. Banks DS, Fradin C (2005) Anomalous diffusion of proteins due to molecular crowding. Biophys J 89:2960–2971.  https://doi.org/10.1529/biophysj.104.051078 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Benedetti F, Dorier J, Burnier Y, Stasiak A (2014) Models that include supercoiling of topological domains reproduce several known features of interphase chromosomes. Nucleic Acids Res 42:2848–2855.  https://doi.org/10.1093/nar/gkt1353 CrossRefPubMedGoogle Scholar
  16. Bhattacharya A, Kim YC, Mittal J (2013) Protein–protein interactions in a crowded environment. Biophys Rev 5:99–108.  https://doi.org/10.1007/s12551-013-0111-5 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bhattacherjee A, Levy Y (2014) Search by proteins for their DNA target site: 1. The effect of DNA conformation on protein sliding. Nucleic Acids Res 42:12404–12414.  https://doi.org/10.1093/nar/gku932 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bhattacherjee A, Krepel D, Levy Y (2016) Coarse-grained models for studying protein diffusion along DNA. Wiley Interdiscip Rev Comput Mol Sci 6:515–531.  https://doi.org/10.1002/wcms.1262 CrossRefGoogle Scholar
  19. Bicout DJ, Field MJ (1996) Stochastic dynamics simulations of macromolecular diffusion in a model of the cytoplasm of Escherichia coli. J Phys Chem 100:2489–2497.  https://doi.org/10.1021/jp9525191 CrossRefGoogle Scholar
  20. Blanco PM, Via M, Garcés JL, Madurga S, Mas F (2017) Brownian dynamics computational model of protein diffusion in crowded media with dextran macromolecules as obstacles. Entropy 19:105.  https://doi.org/10.3390/e19030105 CrossRefGoogle Scholar
  21. Boström M, Williams DR, Ninham BW (2001) Specific ion effects: why DLVO theory fails for biology and colloid systems. Phys Rev Lett 87:168103.  https://doi.org/10.1103/PhysRevLett.87.168103 CrossRefPubMedGoogle Scholar
  22. Bouchaud J-P, Georges A (1990) Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys Rep 195:127–293.  https://doi.org/10.1016/0370-1573(90)90099-N CrossRefGoogle Scholar
  23. Brackley CA, Cates ME, Marenduzzo D (2013a) Intracellular facilitated diffusion: searchers, crowders, and blockers. Phys Rev Lett 111:108101.  https://doi.org/10.1103/PhysRevLett.111.108101 CrossRefPubMedGoogle Scholar
  24. Brackley CA, Taylor S, Papantonis A, Cook PR, Marenduzzo D (2013b) Nonspecific bridging-induced attraction drives clustering of DNA-binding proteins and genome organization. Proc Natl Acad Sci U S A 110:E3605–E3611.  https://doi.org/10.1073/pnas.1302950110 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Bucciarelli S, Myung JS, Farago B et al (2016) Dramatic influence of patchy attractions on short-time protein diffusion under crowded conditions. Sci Adv 2:e1601432.  https://doi.org/10.1126/sciadv.1601432 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Buhr F, Jha S, Thommen M et al (2016) Synonymous codons direct cotranslational folding toward different protein conformations. Mol Cell 61:341–351.  https://doi.org/10.1016/j.molcel.2016.01.008 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Bui PT, Hoang TX (2016) Folding and escape of nascent proteins at ribosomal exit tunnel. J Chem Phys 144:095102.  https://doi.org/10.1063/1.4943042 CrossRefPubMedGoogle Scholar
  28. Capoulade J, Wachsmuth M, Hufnagel L, Knop M (2011) Quantitative fluorescence imaging of protein diffusion and interaction in living cells. Nat Biotechnol 29:835–839.  https://doi.org/10.1038/nbt.1928 CrossRefPubMedGoogle Scholar
  29. Chavent M, Duncan AL, Sansom MS (2016) Molecular dynamics simulations of membrane proteins and their interactions: from nanoscale to mesoscale. Curr Opin Struct Biol 40:8–16.  https://doi.org/10.1016/j.sbi.2016.06.007 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Cherstvy AG, Metzler R (2015) Ergodicity breaking, ageing, and confinement in generalized diffusion processes with position and time dependent diffusivity. J Stat Mech Theory Exp 2015:P05010.  https://doi.org/10.1088/1742-5468/2015/05/P05010 CrossRefGoogle Scholar
  31. Cheung MS, Klimov D, Thirumalai D (2005) Molecular crowding enhances native state stability and refolding rates of globular proteins. Proc Natl Acad Sci U S A 102:4753–4758.  https://doi.org/10.1073/pnas.0409630102 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Cho EJ, Kim JS (2012a) Crowding-induced phase separation of Lennard-Jones particles: implications to nuclear structures in a biological cell. J Phys Chem B 116:3874–3879.  https://doi.org/10.1021/jp3006525 CrossRefPubMedGoogle Scholar
  33. Cho EJ, Kim JS (2012b) Crowding effects on the formation and maintenance of nuclear bodies: insights from molecular-dynamics simulations of simple spherical model particles. Biophys J 103:424–433.  https://doi.org/10.1016/j.bpj.2012.07.007 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Chow E, Skolnick J (2015) Effects of confinement on models of intracellular macromolecular dynamics. Proc Natl Acad Sci U S A 112:14846–14851.  https://doi.org/10.1073/pnas.1514757112 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Chu J-W, Voth GA (2007) Coarse-grained free energy functions for studying protein conformational changes: a double-well network model. Biophys J 93:3860–3871.  https://doi.org/10.1529/biophysj.107.112060 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ciccotti G, Ferrario M (2013) Dynamical non-equilibrium molecular dynamics. Entropy 16:233–257.  https://doi.org/10.3390/e16010233 CrossRefGoogle Scholar
  37. Clementi C (2008) Coarse-grained models of protein folding: toy models or predictive tools? Curr Opin Struct Biol 18:10–15.  https://doi.org/10.1016/j.sbi.2007.10.005 CrossRefPubMedGoogle Scholar
  38. Coquel A-S, Jacob J-P, Primet M et al (2013) Localization of protein aggregation in Escherichia coli is governed by diffusion and nucleoid macromolecular crowding effect. PLoS Comput Biol 9:e1003038.  https://doi.org/10.1371/journal.pcbi.1003038 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Curtis RA, Lue L (2006) A molecular approach to bioseparations: protein–protein and protein–salt interactions. Chem Eng Sci 61:907–923.  https://doi.org/10.1016/j.ces.2005.04.007 CrossRefGoogle Scholar
  40. Dama JF, Sinitskiy AV, McCullagh M et al (2013) The theory of ultra-coarse-graining. 1. General principles. J Chem Theory Comput 9:2466–2480.  https://doi.org/10.1021/ct4000444 CrossRefPubMedGoogle Scholar
  41. Danev R, Baumeister W (2017) Expanding the boundaries of cryo-EM with phase plates. Curr Opin Struct Biol 46:87–94.  https://doi.org/10.1016/j.sbi.2017.06.006 CrossRefPubMedGoogle Scholar
  42. Das RK, Kolomeisky AB (2010) Facilitated search of proteins on DNA: correlations are important. Phys Chem Chem Phys 12:2999–3004.  https://doi.org/10.1039/b921303a CrossRefPubMedGoogle Scholar
  43. de Nooijer S, Wellink J, Mulder B, Bisseling T (2009) Non-specific interactions are sufficient to explain the position of heterochromatic chromocenters and nucleoli in interphase nuclei. Nucleic Acids Res 37:3558–3568.  https://doi.org/10.1093/nar/gkp219 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Denesyuk NA, Thirumalai D (2013) Entropic stabilization of the folded states of RNA due to macromolecular crowding. Biophys Rev 5:225–232.  https://doi.org/10.1007/s12551-013-0119-x CrossRefPubMedPubMedCentralGoogle Scholar
  45. Di Rienzo C, Piazza V, Gratton E, Beltram F, Cardarelli F (2014) Probing short-range protein Brownian motion in the cytoplasm of living cells. Nat Commun 5:5891.  https://doi.org/10.1038/ncomms6891 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Dimura M, Peulen TO, Hanke CA, Prakash A, Gohlke H, Seidel CA (2016) Quantitative FRET studies and integrative modeling unravel the structure and dynamics of biomolecular systems. Curr Opin Struct Biol 40:163–185.  https://doi.org/10.1016/j.sbi.2016.11.012 CrossRefPubMedGoogle Scholar
  47. Dix JA, Verkman AS (2008) Crowding effects on diffusion in solutions and cells. Annu Rev Biophys 37:247–263.  https://doi.org/10.1146/annurev.biophys.37.032807.125824 CrossRefPubMedGoogle Scholar
  48. Długosz M (2015) Effects of hydrodynamic interactions on the apparent 1D mobility of a nonspecifically bound protein following a helical path around DNA. J Phys Chem B 119:14433–14440.  https://doi.org/10.1021/acs.jpcb.5b08115 CrossRefPubMedGoogle Scholar
  49. Długosz M, Trylska J (2011) Diffusion in crowded biological environments: applications of Brownian dynamics. BMC Biophys 4:3.  https://doi.org/10.1186/2046-1682-4-3 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Długosz M, Zieliński P, Trylska J (2011) Brownian dynamics simulations on CPU and GPU with BD_BOX. J Comput Chem 32:2734–2744.  https://doi.org/10.1002/jcc.21847 CrossRefPubMedGoogle Scholar
  51. Dross N, Spriet C, Zwerger M, Müller G, Waldeck W, Langowski J (2009) Mapping eGFP oligomer mobility in living cell nuclei. PLoS One 4:e5041.  https://doi.org/10.1371/journal.pone.0005041 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Dunn NJH, Foley TT, Noid WG (2016) Van der Waals perspective on coarse-graining: progress toward solving representability and transferability problems. Acc Chem Res 49:2832–2840.  https://doi.org/10.1021/acs.accounts.6b00498 CrossRefPubMedGoogle Scholar
  53. Durrant JD, Amaro RE (2014) LipidWrapper: an algorithm for generating large-scale membrane models of arbitrary geometry. PLoS Comput Biol 10:e1003720.  https://doi.org/10.1371/journal.pcbi.1003720 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Earnest TM, Watanabe R, Stone JE et al (2017) Challenges of integrating stochastic dynamics and cryo-electron tomograms in whole-cell simulations. J Phys Chem B 121:3871–3881.  https://doi.org/10.1021/acs.jpcb.7b00672 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Egorov SA (2004) Effect of repulsive and attractive interactions on depletion forces in colloidal suspensions: a density functional theory treatment. Phys Rev E Stat Nonlinear Soft Matter Phys 70:031402.  https://doi.org/10.1103/PhysRevE.70.031402 CrossRefGoogle Scholar
  56. Elcock AH (2013) A molecule-centered method for accelerating the calculation of hydrodynamic interactions in Brownian dynamics simulations containing many flexible biomolecules. J Chem Theory Comput 9:3224–3239.  https://doi.org/10.1021/ct400240w CrossRefPubMedPubMedCentralGoogle Scholar
  57. Elowitz MB, Surette MG, Wolf PE, Stock JB, Leibler S (1999) Protein mobility in the cytoplasm of Escherichia coli. J Bacteriol 181:197–203PubMedPubMedCentralGoogle Scholar
  58. Epstein IR, Xu B (2016) Reaction–diffusion processes at the nano- and microscales. Nat Nanotechnol 11:312–319.  https://doi.org/10.1038/nnano.2016.41 CrossRefPubMedGoogle Scholar
  59. Erban R, Chapman SJ (2009) Stochastic modelling of reaction–diffusion processes: algorithms for bimolecular reactions. Phys Biol 6:046001.  https://doi.org/10.1088/1478-3975/6/4/046001 CrossRefPubMedGoogle Scholar
  60. Fan J, Tuncay K, Ortoleva PJ (2007) Chromosome segregation in Escherichia coli division: a free energy-driven string model. Comput Biol Chem 31:257–264.  https://doi.org/10.1016/j.compbiolchem.2007.05.003 CrossRefPubMedGoogle Scholar
  61. Fange D, Mahmutovic A, Elf J (2012) MesoRD 1.0: stochastic reaction–diffusion simulations in the microscopic limit. Bioinformatics 28:3155–3157.  https://doi.org/10.1093/bioinformatics/bts584 CrossRefPubMedGoogle Scholar
  62. Feig M, Sugita Y (2013) Reaching new levels of realism in modeling biological macromolecules in cellular environments. J Mol Graph Model 45:144–156.  https://doi.org/10.1016/j.jmgm.2013.08.017 CrossRefPubMedGoogle Scholar
  63. Feng X, Chen A, Wang J, Zhao N, Hou Z (2016) Understanding protein diffusion in polymer solutions: a hydration with depletion model. J Phys Chem B 120:10114–10123.  https://doi.org/10.1021/acs.jpcb.6b06248 CrossRefPubMedGoogle Scholar
  64. Foffano G, Marenduzzo D, Orlandini E (2012) Facilitated diffusion on confined DNA. Phys Rev E 85:021919.  https://doi.org/10.1103/PhysRevE.85.021919 CrossRefGoogle Scholar
  65. Foffano G, Levernier N, Lenz M (2016) The dynamics of filament assembly define cytoskeletal network morphology. Nat Commun 7:13827.  https://doi.org/10.1038/ncomms13827 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Foffi G, Pastore A, Piazza F, Temussi PA (2013) Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10–14 June 2012). Phys Biol 10:040301.  https://doi.org/10.1088/1478-3975/10/4/040301 CrossRefPubMedGoogle Scholar
  67. Gao T, Blackwell R, Glaser MA, Betterton MD, Shelley MJ (2015) Multiscale modeling and simulation of microtubule–motor-protein assemblies. Phys Rev E 92:062709.  https://doi.org/10.1103/PhysRevE.92.062709 CrossRefGoogle Scholar
  68. Gershenson A, Gierasch LM (2011) Protein folding in the cell: challenges and progress. Curr Opin Struct Biol 21:32–41.  https://doi.org/10.1016/j.sbi.2010.11.001 CrossRefPubMedGoogle Scholar
  69. Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361.  https://doi.org/10.1021/j100540a008 CrossRefGoogle Scholar
  70. Gnutt D, Gao M, Brylski O, Heyden M, Ebbinghaus S (2015) Excluded-volume effects in living cells. Angew Chem Int Ed Engl 54:2548–2551.  https://doi.org/10.1002/anie.201409847 CrossRefPubMedGoogle Scholar
  71. Goldenberg DP, Argyle B (2014) Minimal effects of macromolecular crowding on an intrinsically disordered protein: a small-angle neutron scattering study. Biophys J 106:905–914.  https://doi.org/10.1016/j.bpj.2013.12.003 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Golding I, Cox EC (2004) RNA dynamics in live Escherichia coli cells. Proc Natl Acad Sci U S A 101:11310–11315.  https://doi.org/10.1073/pnas.0404443101 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Golding I, Cox EC (2006) Physical nature of bacterial cytoplasm. Phys Rev Lett 96:098102.  https://doi.org/10.1103/PhysRevLett.96.098102 CrossRefPubMedGoogle Scholar
  74. Gorensek-Benitez AH, Smith AE, Stadmiller SS, Perez Goncalves GM, Pielak GJ (2017) Cosolutes, crowding, and protein folding kinetics. J Phys Chem B 121:6527–6537.  https://doi.org/10.1021/acs.jpcb.7b03786 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Guardiani C, Cencini M, Cecconi F (2014) Coarse-grained modeling of protein unspecifically bound to DNA. Phys Biol 11:026003.  https://doi.org/10.1088/1478-3975/11/2/026003 CrossRefPubMedGoogle Scholar
  76. Guigas G, Weiss M (2008) Sampling the cell with anomalous diffusion—the discovery of slowness. Biophys J 94:90–94.  https://doi.org/10.1529/biophysj.107.117044 CrossRefPubMedGoogle Scholar
  77. Hacker WC, Li S, Elcock AH (2017) Features of genomic organization in a nucleotide-resolution molecular model of the Escherichia coli chromosome. Nucleic Acids Res 45:7541–7554.  https://doi.org/10.1093/nar/gkx541 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Halford SE (2009) An end to 40 years of mistakes in DNA–protein association kinetics? Biochem Soc Trans 37:343–348.  https://doi.org/10.1042/BST0370343 CrossRefPubMedGoogle Scholar
  79. Hammar P, Leroy P, Mahmutovic A, Marklund EG, Berg OG, Elf J (2012) The lac repressor displays facilitated diffusion in living cells. Science 336:1595–1598.  https://doi.org/10.1126/science.1221648 CrossRefPubMedGoogle Scholar
  80. Harada R, Sugita Y, Feig M (2012) Protein crowding affects hydration structure and dynamics. J Am Chem Soc 134:4842–4849.  https://doi.org/10.1021/ja211115q CrossRefPubMedPubMedCentralGoogle Scholar
  81. Hasnain S, McClendon CL, Hsu MT, Jacobson MP, Bandyopadhyay P (2014) A new coarse-grained model for E. coli cytoplasm: accurate calculation of the diffusion coefficient of proteins and observation of anomalous diffusion. PLoS One 9:e106466.  https://doi.org/10.1371/journal.pone.0106466 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Hihara S, Pack C-G, Kaizu K et al (2012) Local nucleosome dynamics facilitate chromatin accessibility in living mammalian cells. Cell Rep 2:1645–1656.  https://doi.org/10.1016/j.celrep.2012.11.008 CrossRefPubMedGoogle Scholar
  83. Höfling F, Franosch T (2013) Anomalous transport in the crowded world of biological cells. Rep Prog Phys 76:046602.  https://doi.org/10.1088/0034-4885/76/4/046602 CrossRefPubMedGoogle Scholar
  84. Huang K-Y, Kingsley CN, Sheil R et al (2016) Stability of protein-specific hydration Shell on crowding. J Am Chem Soc 138:5392–5402.  https://doi.org/10.1021/jacs.6b01989 CrossRefPubMedGoogle Scholar
  85. Illien P, Zhao X, Dey KK, Butler PJ, Sen A, Golestanian R (2017) Exothermicity is not a necessary condition for enhanced diffusion of enzymes. Nano Lett 17:4415–4420.  https://doi.org/10.1021/acs.nanolett.7b01502 CrossRefPubMedGoogle Scholar
  86. Israelachvili JN (1992) Intermolecular and surface forces. Academic Press, LondonGoogle Scholar
  87. Ivani I, Dans PD, Noy A et al (2016) Parmbsc1: a refined force field for DNA simulations. Nat Methods 13:55–58.  https://doi.org/10.1038/nmeth.3658 CrossRefPubMedGoogle Scholar
  88. Jacobson GN, Clark PL (2016) Quality over quantity: optimizing co-translational protein folding with non-‘optimal’ synonymous codons. Curr Opin Struct Biol 38:102–110.  https://doi.org/10.1016/j.sbi.2016.06.002 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Javer A, Long Z, Nugent E et al (2013) Short-time movement of E. coli chromosomal loci depends on coordinate and subcellular localization. Nat Commun 4:3003.  https://doi.org/10.1038/ncomms3003 CrossRefPubMedGoogle Scholar
  90. Javer A, Kuwada NJ, Long Z et al (2014) Persistent super-diffusive motion of Escherichia coli chromosomal loci. Nat Commun 5:3854.  https://doi.org/10.1038/ncomms4854 CrossRefPubMedGoogle Scholar
  91. Jefferys BR, Kelley LA, Sternberg MJE (2010) Protein folding requires crowd control in a simulated cell. J Mol Biol 397:1329–1338.  https://doi.org/10.1016/j.jmb.2010.01.074 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Johansson H, Jensen MR, Gesmar H et al (2014) Specific and nonspecific interactions in ultraweak protein–protein associations revealed by solvent paramagnetic relaxation enhancements. J Am Chem Soc 136:10277–10286.  https://doi.org/10.1021/ja503546j CrossRefPubMedPubMedCentralGoogle Scholar
  93. Johnson GT, Autin L, Al-Alusi M, Goodsell DS, Sanner MF, Olson AJ (2015) cellPACK: a virtual mesoscope to model and visualize structural systems biology. Nat Methods 12:85–91.  https://doi.org/10.1038/nmeth.3204 CrossRefPubMedGoogle Scholar
  94. Joyner RP, Tang JH, Helenius J et al (2016) A glucose-starvation response regulates the diffusion of macromolecules. Elife 5:e09376.  https://doi.org/10.7554/eLife.09376 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Kalwarczyk T, Tabaka M, Holyst R (2012) Biologistics—diffusion coefficients for complete proteome of Escherichia coli. Bioinformatics 28:2971–2978.  https://doi.org/10.1093/bioinformatics/bts537 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Kekenes-Huskey PM, Scott CE, Atalay S (2016) Quantifying the influence of the crowded cytoplasm on small molecule diffusion. J Phys Chem B 120:8696–8706.  https://doi.org/10.1021/acs.jpcb.6b03887 CrossRefPubMedGoogle Scholar
  97. Kim JS, Szleifer I (2014) Crowding-induced formation and structural alteration of nuclear compartments: insights from computer simulations. Int Rev Cell Mol Biol 307:73–108.  https://doi.org/10.1016/B978-0-12-800046-5.00004-7 CrossRefPubMedGoogle Scholar
  98. Klenin KV, Merlitz H, Langowski J, Wu C-X (2006) Facilitated diffusion of DNA-binding proteins. Phys Rev Lett 96:018104.  https://doi.org/10.1103/PhysRevLett.96.018104 CrossRefPubMedGoogle Scholar
  99. Kmiecik S, Gront D, Kolinski M, Wieteska L, Dawid AE, Kolinski A (2016) Coarse-grained protein models and their applications. Chem Rev 116:7898–7936.  https://doi.org/10.1021/acs.chemrev.6b00163 CrossRefPubMedGoogle Scholar
  100. Korolev N, Nordenskiöld L, Lyubartsev AP (2016) Multiscale coarse-grained modelling of chromatin components: DNA and the nucleosome. Adv Colloid Interf Sci 232:36–48.  https://doi.org/10.1016/j.cis.2016.02.002 CrossRefGoogle Scholar
  101. Krepel D, Levy Y (2016) Protein diffusion along DNA: on the effect of roadblocks and crowders. J Phys A Math Theor 49:494003.  https://doi.org/10.1088/1751-8113/49/49/494003 CrossRefGoogle Scholar
  102. Lampo TJ, Stylianidou S, Backlund MP, Wiggins PA, Spakowitz AJ (2017) Cytoplasmic RNA-protein particles exhibit non-Gaussian subdiffusive behavior. Biophys J 112:532–542.  https://doi.org/10.1016/j.bpj.2016.11.3208 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Lécuyer E, Yoshida H, Parthasarathy N et al (2007) Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell 131:174–187.  https://doi.org/10.1016/j.cell.2007.08.003 CrossRefPubMedGoogle Scholar
  104. Lee EH, Hsin J, Sotomayor M, Comellas G, Schulten K (2009) Discovery through the computational microscope. Structure 17:1295–1306.  https://doi.org/10.1016/j.str.2009.09.001 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Leonarski F, Trovato F, Tozzini V, Leś A, Trylska J (2013) Evolutionary algorithm in the optimization of a coarse-grained force field. J Chem Theory Comput 9:4874–4889.  https://doi.org/10.1021/ct4005036 CrossRefPubMedGoogle Scholar
  106. Liu B, Åberg C, van Eerden FJ, Marrink SJ, Poolman B, Boersma AJ (2017) Design and properties of genetically encoded probes for sensing macromolecular crowding. Biophys J 112:1929–1939.  https://doi.org/10.1016/j.bpj.2017.04.004 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Louis AA, Allahyarov E, Löwen H, Roth R (2002) Effective forces in colloidal mixtures: from depletion attraction to accumulation repulsion. Phys Rev E 65:061407.  https://doi.org/10.1103/PhysRevE.65.061407 CrossRefGoogle Scholar
  108. Luby-Phelps K (1999) Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol 192:189–221.  https://doi.org/10.1016/S0074-7696(08)60527-6 CrossRefGoogle Scholar
  109. Luchinat E, Banci L (2017) In-cell NMR: a topical review. IUCrJ 4:108–118.  https://doi.org/10.1107/S2052252516020625 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Lučić V, Rigort A, Baumeister W (2013) Cryo-electron tomography: the challenge of doing structural biology in situ. J Cell Biol 202:407–419.  https://doi.org/10.1083/jcb.201304193 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Luo X-D, Kong F-L, Dang H-B, Chen J, Liang Y (2016) Macromolecular crowding favors the fibrillization of β2-microglobulin by accelerating the nucleation step and inhibiting fibril disassembly. Biochim Biophys Acta 1864:1609–1619.  https://doi.org/10.1016/j.bbapap.2016.07.012 CrossRefPubMedGoogle Scholar
  112. Ma Y, Chen Y, Yu W, Luo K (2016) How nonspecifically DNA-binding proteins search for the target in crowded environments. J Chem Phys 144:125102.  https://doi.org/10.1063/1.4944905 CrossRefPubMedGoogle Scholar
  113. Maeshima K, Kaizu K, Tamura S, Nozaki T, Kokubo T, Takahashi K (2015) The physical size of transcription factors is key to transcriptional regulation in chromatin domains. J Phys Condens Matter 27:064116.  https://doi.org/10.1088/0953-8984/27/6/064116 CrossRefPubMedGoogle Scholar
  114. Mahamid J, Pfeffer S, Schaffer M et al (2016) Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science 351:969–972.  https://doi.org/10.1126/science.aad8857 CrossRefPubMedGoogle Scholar
  115. Mak M, Kim T, Zaman MH, Kamm RD (2015) Multiscale mechanobiology: computational models for integrating molecules to multicellular systems. Integr Biol 7:1093–1108.  https://doi.org/10.1039/C5IB00043B CrossRefGoogle Scholar
  116. Mak M, Zaman MH, Kamm RD, Kim T (2016) Interplay of active processes modulates tension and drives phase transition in self-renewing, motor-driven cytoskeletal networks. Nat Commun 7:10323.  https://doi.org/10.1038/ncomms10323 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Manning RS, Maddocks JH, Kahn JD (1996) A continuum rod model of sequence-dependent DNA structure. J Chem Phys 105:5626–5646.  https://doi.org/10.1063/1.472373 CrossRefGoogle Scholar
  118. Marcovitz A, Levy Y (2013) Obstacles may facilitate and direct DNA search by proteins. Biophys J 104:2042–2050.  https://doi.org/10.1016/j.bpj.2013.03.030 CrossRefPubMedPubMedCentralGoogle Scholar
  119. Marenduzzo D, Finan K, Cook PR (2006) The depletion attraction: an underappreciated force driving cellular organization. J Cell Biol 175:681–686.  https://doi.org/10.1083/jcb.200609066 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Matsuda H, Putzel GG, Backman V, Szleifer I (2014) Macromolecular crowding as a regulator of gene transcription. Biophys J 106:1801–1810.  https://doi.org/10.1016/j.bpj.2014.02.019 CrossRefPubMedPubMedCentralGoogle Scholar
  121. McGuffee SR, Elcock AH (2010) Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm. PLoS Comput Biol 6:e1000694.  https://doi.org/10.1371/journal.pcbi.1000694 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Mereghetti P, Wade RC (2012) Atomic detail Brownian dynamics simulations of concentrated protein solutions with a mean field treatment of hydrodynamic interactions. J Phys Chem B 116:8523–8533.  https://doi.org/10.1021/jp212532h CrossRefPubMedGoogle Scholar
  123. Mereghetti P, Kokh D, McCammon JA, Wade RC (2011) Diffusion and association processes in biological systems: theory, computation and experiment. BMC Biophys 4:2.  https://doi.org/10.1186/2046-1682-4-2 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Michalski PJ, Loew LM (2016) SpringSaLaD: a spatial, particle-based biochemical simulation platform with excluded volume. Biophys J 110:523–529.  https://doi.org/10.1016/j.bpj.2015.12.026 CrossRefPubMedPubMedCentralGoogle Scholar
  125. Miller CM, Kim YC, Mittal J (2016) Protein composition determines the effect of crowding on the properties of disordered proteins. Biophys J 111:28–37.  https://doi.org/10.1016/j.bpj.2016.05.033 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Minh DDL, Chang C-e, Trylska J, Tozzini V, McCammon JA (2006) The influence of macromolecular crowding on HIV-1 protease internal dynamics. J Am Chem Soc 128:6006–6007.  https://doi.org/10.1021/ja060483s CrossRefPubMedPubMedCentralGoogle Scholar
  127. Minton AP (2005) Models for excluded volume interaction between an unfolded protein and rigid macromolecular cosolutes: macromolecular crowding and protein stability revisited. Biophys J 88:971–985.  https://doi.org/10.1529/biophysj.104.050351 CrossRefPubMedGoogle Scholar
  128. Minton AP (2017) Explicit incorporation of hard and soft protein–protein interactions into models for crowding effects in protein mixtures. 2. Effects of varying hard and soft interactions upon prototypical chemical equilibria. J Phys Chem B 121:5515–5522.  https://doi.org/10.1021/acs.jpcb.7b02378 CrossRefPubMedPubMedCentralGoogle Scholar
  129. Mittal J, Best RB (2010) Dependence of protein folding stability and dynamics on the density and composition of macromolecular crowders. Biophys J 98:315–320.  https://doi.org/10.1016/j.bpj.2009.10.009 CrossRefPubMedPubMedCentralGoogle Scholar
  130. Mondal A, Bhattacherjee A (2015) Searching target sites on DNA by proteins: role of DNA dynamics under confinement. Nucleic Acids Res 43:9176–9186.  https://doi.org/10.1093/nar/gkv931 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Mondal J, Bratton BP, Li Y, Yethiraj A, Weisshaar JC (2011) Entropy-based mechanism of ribosome-nucleoid segregation in E. coli cells. Biophys J 100:2605–2613.  https://doi.org/10.1016/j.bpj.2011.04.030 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Mourão MA, Hakim JB, Schnell S (2014) Connecting the dots: the effects of macromolecular crowding on cell physiology. Biophys J 107:2761–2766.  https://doi.org/10.1016/j.bpj.2014.10.051 CrossRefPubMedPubMedCentralGoogle Scholar
  133. Mukherjee SK, Gautam S, Biswas S, Kundu J, Chowdhury PK (2015) Do macromolecular crowding agents exert only an excluded volume effect? A protein solvation study. J Phys Chem B 119:14145–14156.  https://doi.org/10.1021/acs.jpcb.5b09446 CrossRefPubMedGoogle Scholar
  134. Mullineaux CW (2016) Classic spotlight: dynamics of the bacterial cytoplasm. J Bacteriol 198:1183.  https://doi.org/10.1128/JB.00010-16 CrossRefPubMedPubMedCentralGoogle Scholar
  135. Munder MC, Midtvedt D, Franzmann T et al (2016) A pH-driven transition of the cytoplasm from a fluid- to a solid-like state promotes entry into dormancy. Elife 5:e09347.  https://doi.org/10.7554/eLife.09347 CrossRefPubMedPubMedCentralGoogle Scholar
  136. Muramatsu N, Minton AP (1988) Tracer diffusion of globular proteins in concentrated protein solutions. Proc Natl Acad Sci U S A 85:2984–2988.  https://doi.org/10.1073/pnas.85.9.2984 CrossRefPubMedPubMedCentralGoogle Scholar
  137. Naddaf L, Sayyed-Ahmad A (2014) Intracellular crowding effects on the self-association of the bacterial cell division protein FtsZ. Arch Biochem Biophys 564:12–19.  https://doi.org/10.1016/j.abb.2014.08.016 CrossRefPubMedGoogle Scholar
  138. Neri I, Kern N, Parmeggiani A (2013) Modeling cytoskeletal traffic: an interplay between passive diffusion and active transport. Phys Rev Lett 110:098102.  https://doi.org/10.1103/PhysRevLett.110.098102 CrossRefPubMedGoogle Scholar
  139. Nguyen LT, Gumbart JC, Jensen GJ (2016) Coarse-grained molecular dynamics simulations of the bacterial cell wall. Methods Mol Biol 1440:247–270CrossRefGoogle Scholar
  140. Niesen MJM, Wang CY, Van Lehn RC, Miller TF 3rd (2017) Structurally detailed coarse-grained model for sec-facilitated co-translational protein translocation and membrane integration. PLoS Comput Biol 13:e1005427.  https://doi.org/10.1371/journal.pcbi.1005427 CrossRefPubMedPubMedCentralGoogle Scholar
  141. Nilsson OB, Hedman R, Marino J et al (2015) Cotranslational protein folding inside the ribosome exit tunnel. Cell Rep 12:1533–1540.  https://doi.org/10.1016/j.celrep.2015.07.065 CrossRefPubMedPubMedCentralGoogle Scholar
  142. Oh I, Choi S, Jung Y, Kim JS (2015) Phase separation of a Lennard-Jones fluid interacting with a long, condensed polymer chain: implications for the nuclear body formation near chromosomes. Soft Matter 11:6450–6459.  https://doi.org/10.1039/c5sm01096a CrossRefPubMedGoogle Scholar
  143. Okazaki K, Koga N, Takada S, Onuchic JN, Wolynes PG (2006) Multiple-basin energy landscapes for large-amplitude conformational motions of proteins: structure-based molecular dynamics simulations. Proc Natl Acad Sci U S A 103:11844–11849.  https://doi.org/10.1073/pnas.0604375103 CrossRefPubMedPubMedCentralGoogle Scholar
  144. Ozer G, Luque A, Schlick T (2015) The chromatin fiber: multiscale problems and approaches. Curr Opin Struct Biol 31:124–139.  https://doi.org/10.1016/j.sbi.2015.04.002 CrossRefPubMedPubMedCentralGoogle Scholar
  145. Parry BR, Surovtsev IV, Cabeen MT, O’Hern CS, Dufresne ER, Jacobs-Wagner C (2014) The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity. Cell 156:183–194.  https://doi.org/10.1016/j.cell.2013.11.028 CrossRefPubMedGoogle Scholar
  146. Paulsen J, Sekelja M, Oldenburg AR et al (2017) Chrom3D: three-dimensional genome modeling from Hi-C and nuclear lamin-genome contacts. Genome Biol 18:21.  https://doi.org/10.1186/s13059-016-1146-2 CrossRefPubMedPubMedCentralGoogle Scholar
  147. Peixoto PDS, Bouchoux A, Huet S et al (2015) Diffusion and partitioning of macromolecules in casein microgels: evidence for size-dependent attractive interactions in a dense protein system. Langmuir 31:1755–1765.  https://doi.org/10.1021/la503657u CrossRefPubMedGoogle Scholar
  148. Pelletier J, Halvorsen K, Ha B-Y et al (2012) Physical manipulation of the Escherichia coli chromosome reveals its soft nature. Proc Natl Acad Sci U S A 109:E2649–E2656.  https://doi.org/10.1073/pnas.1208689109 CrossRefPubMedPubMedCentralGoogle Scholar
  149. Pérez Santero S, Favretto F, Zanzoni S, Chignola R, Assfalg M, D’Onofrio M (2016) Effects of macromolecular crowding on a small lipid binding protein probed at the single-amino acid level. Arch Biochem Biophys 606:99–110.  https://doi.org/10.1016/j.abb.2016.07.017 CrossRefPubMedGoogle Scholar
  150. Perilla JR, Goh BC, Cassidy CK et al (2015) Molecular dynamics simulations of large macromolecular complexes. Curr Opin Struct Biol 31:64–74.  https://doi.org/10.1016/j.sbi.2015.03.007 CrossRefPubMedPubMedCentralGoogle Scholar
  151. Phillip Y, Schreiber G (2013) Formation of protein complexes in crowded environments—from in vitro to in vivo. FEBS Lett 587:1046–1052.  https://doi.org/10.1016/j.febslet.2013.01.007 CrossRefPubMedGoogle Scholar
  152. Piana S, Klepeis JL, Shaw DE (2014) Assessing the accuracy of physical models used in protein-folding simulations: quantitative evidence from long molecular dynamics simulations. Curr Opin Struct Biol 24:98–105.  https://doi.org/10.1016/j.sbi.2013.12.006 CrossRefPubMedGoogle Scholar
  153. Popov K, Komianos J, Papoian GA (2016) MEDYAN: mechanochemical simulations of contraction and polarity alignment in actomyosin networks. PLoS Comput Biol 12:e1004877.  https://doi.org/10.1371/journal.pcbi.1004877 CrossRefPubMedPubMedCentralGoogle Scholar
  154. Prausnitz J (2015) The fallacy of misplaced concreteness. Biophys J 108:453–454.  https://doi.org/10.1016/j.bpj.2014.11.3486 CrossRefPubMedPubMedCentralGoogle Scholar
  155. Putzel GG, Tagliazucchi M, Szleifer I (2014) Nonmonotonic diffusion of particles among larger attractive crowding spheres. Phys Rev Lett 113:138302.  https://doi.org/10.1103/PhysRevLett.113.138302 CrossRefPubMedPubMedCentralGoogle Scholar
  156. Qi HW, Nakka P, Chen C, Radhakrishnan ML (2014) The effect of macromolecular crowding on the electrostatic component of Barnase–Barstar binding: a computational, implicit solvent-based study. PLoS One 9:e98618.  https://doi.org/10.1371/journal.pone.0098618 CrossRefPubMedPubMedCentralGoogle Scholar
  157. Qin S, Zhou H-X (2013) Effects of macromolecular crowding on the conformational ensembles of disordered proteins. J Phys Chem Lett 4:3429–3434.  https://doi.org/10.1021/jz401817x CrossRefGoogle Scholar
  158. Qin S, Zhou H-X (2016) Fast method for computing chemical potentials and liquid–liquid phase equilibria of macromolecular solutions. J Phys Chem B 120:8164–8174.  https://doi.org/10.1021/acs.jpcb.6b01607 CrossRefPubMedPubMedCentralGoogle Scholar
  159. Rebelo LM, de Sousa JS, Mendes Filho J, Radmacher M (2013) Comparison of the viscoelastic properties of cells from different kidney cancer phenotypes measured with atomic force microscopy. Nanotechnology 24:055102.  https://doi.org/10.1088/0957-4484/24/5/055102 CrossRefPubMedGoogle Scholar
  160. Reddy T, Sansom MSP (2016) Computational virology: from the inside out. Biochim Biophys Acta Biomembr 1858:1610–1618.  https://doi.org/10.1016/j.bbamem.2016.02.007 CrossRefGoogle Scholar
  161. Redler RL, Shirvanyants D, Dagliyan O et al (2014) Computational approaches to understanding protein aggregation in neurodegeneration. J Mol Cell Biol 6:104–115.  https://doi.org/10.1093/jmcb/mju007 CrossRefPubMedPubMedCentralGoogle Scholar
  162. Reverey JF, Jeon J-H, Bao H, Leippe M, Metzler R, Selhuber-Unkel C (2015) Superdiffusion dominates intracellular particle motion in the supercrowded cytoplasm of pathogenic Acanthamoeba castellanii. Sci Rep 5:11690.  https://doi.org/10.1038/srep11690 CrossRefPubMedPubMedCentralGoogle Scholar
  163. Richter K, Nessling M, Lichter P (2008) Macromolecular crowding and its potential impact on nuclear function. Biochim Biophys Acta Mol Cell Res 1783:2100–2107.  https://doi.org/10.1016/j.bbamcr.2008.07.017 CrossRefGoogle Scholar
  164. Ridgway D, Broderick G, Lopez-Campistrous A et al (2008) Coarse-grained molecular simulation of diffusion and reaction kinetics in a crowded virtual cytoplasm. Biophys J 94:3748–3759.  https://doi.org/10.1529/biophysj.107.116053 CrossRefPubMedPubMedCentralGoogle Scholar
  165. Rigato A, Miyagi A, Scheuring S, Rico F (2017) High-frequency microrheology reveals cytoskeleton dynamics in living cells. Nat Phys 13:771–775.  https://doi.org/10.1038/nphys4104 CrossRefPubMedPubMedCentralGoogle Scholar
  166. Rivas G, Minton AP (2016) Macromolecular crowding in vitro, in vivo, and in between. Trends Biochem Sci 41:970–981.  https://doi.org/10.1016/j.tibs.2016.08.013 CrossRefPubMedPubMedCentralGoogle Scholar
  167. Robinson KE, Reardon PN, Spicer LD (2012) In-cell NMR spectroscopy in Escherichia coli. Methods Mol Biol 831:261–277.  https://doi.org/10.1007/978-1-61779-480-3_15 CrossRefPubMedGoogle Scholar
  168. Rodnina MV, Wintermeyer W (2016) Protein elongation, co-translational folding and targeting. J Phys Chem B 121(34):8009–8025. Accessed 31 Aug 2017.  https://doi.org/10.1021/acs.jpcb.7b03570 CrossRefGoogle Scholar
  169. Roggiani M, Goulian M (2015) Chromosome–membrane interactions in bacteria. Annu Rev Genet 49:115–129.  https://doi.org/10.1146/annurev-genet-112414-054958 CrossRefPubMedGoogle Scholar
  170. Roosen-Runge F, Hennig M, Zhang F et al (2011) Protein self-diffusion in crowded solutions. Proc Natl Acad Sci U S A 108:11815–11820.  https://doi.org/10.1073/pnas.1107287108 CrossRefPubMedPubMedCentralGoogle Scholar
  171. Rosa A, Zimmer C (2014) Computational models of large-scale genome architecture. Int Rev Cell Mol Biol 307:275–349.  https://doi.org/10.1016/B978-0-12-800046-5.00009-6 CrossRefPubMedGoogle Scholar
  172. Rothe M, Gruber T, Gröger S, Balbach J, Saalwächter K, Roos M (2016) Transient binding accounts for apparent violation of the generalized Stokes–Einstein relation in crowded protein solutions. Phys Chem Chem Phys 18:18006–18014.  https://doi.org/10.1039/C6CP01056C CrossRefPubMedGoogle Scholar
  173. Rotta M, Timmers LFSM, Sequeiros-Borja C et al (2017) Observed crowding effects on mycobacterium tuberculosis 2-trans-enoyl-ACP (CoA) reductase enzyme activity are not due to excluded volume only. Sci Rep 7:6826.  https://doi.org/10.1038/s41598-017-07266-w CrossRefPubMedPubMedCentralGoogle Scholar
  174. Rovigatti L, Gnan N, Parola A, Zaccarelli E (2015) How soft repulsion enhances the depletion mechanism. Soft Matter 11:692–700.  https://doi.org/10.1039/C4SM02218A CrossRefPubMedGoogle Scholar
  175. Rudner DZ, Losick R (2010) Protein subcellular localization in bacteria. Cold Spring Harb Perspect Biol 2:a000307.  https://doi.org/10.1101/cshperspect.a000307 CrossRefPubMedPubMedCentralGoogle Scholar
  176. Rudzinski JF, Noid WG (2014) Investigation of coarse-grained mappings via an iterative generalized Yvon–Born–Green method. J Phys Chem B 118:8295–8312.  https://doi.org/10.1021/jp501694z CrossRefPubMedGoogle Scholar
  177. Ruff KM, Khan SJ, Pappu RV (2014) A coarse-grained model for polyglutamine aggregation modulated by amphipathic flanking sequences. Biophys J 107:1226–1235.  https://doi.org/10.1016/j.bpj.2014.07.019 CrossRefPubMedPubMedCentralGoogle Scholar
  178. Rusinga FI, Weis DD (2017) Soft interactions and volume exclusion by polymeric crowders can stabilize or destabilize transient structure in disordered proteins depending on polymer concentration. Proteins Struct Funct Bioinf 85:1468–1479.  https://doi.org/10.1002/prot.25307 CrossRefGoogle Scholar
  179. Saluja A, Kalonia DS (2008) Nature and consequences of protein–protein interactions in high protein concentration solutions. Int J Pharm 358:1–15.  https://doi.org/10.1016/j.ijpharm.2008.03.041 CrossRefPubMedGoogle Scholar
  180. Samiotakis A, Wittung-Stafshede P, Cheung MS (2009) Folding, stability and shape of proteins in crowded environments: experimental and computational approaches. Int J Mol Sci 10:572–588.  https://doi.org/10.3390/ijms10020572 CrossRefPubMedPubMedCentralGoogle Scholar
  181. Sapir L, Harries D (2015) Is the depletion force entropic? Molecular crowding beyond steric interactions. Curr Opin Colloid Interface Sci 20:3–10.  https://doi.org/10.1016/j.cocis.2014.12.003 CrossRefGoogle Scholar
  182. Sarkar M, Li C, Pielak GJ (2013) Soft interactions and crowding. Biophys Rev 5:187–194.  https://doi.org/10.1007/s12551-013-0104-4 CrossRefPubMedPubMedCentralGoogle Scholar
  183. Saxton MJ (1994) Anomalous diffusion due to obstacles: a Monte Carlo study. Biophys J 66:394–401.  https://doi.org/10.1016/S0006-3495(94)80789-1 CrossRefPubMedPubMedCentralGoogle Scholar
  184. Saxton MJ (1996) Anomalous diffusion due to binding: a Monte Carlo study. Biophys J 70:1250–1262.  https://doi.org/10.1016/S0006-3495(96)79682-0 CrossRefPubMedPubMedCentralGoogle Scholar
  185. Saxton MJ (1997) Single-particle tracking: the distribution of diffusion coefficients. Biophys J 72:1744–1753.  https://doi.org/10.1016/S0006-3495(97)78820-9 CrossRefPubMedPubMedCentralGoogle Scholar
  186. Schöneberg J, Ullrich A, Noé F (2014) Simulation tools for particle-based reaction–diffusion dynamics in continuous space. BMC Biophys 7:11.  https://doi.org/10.1186/s13628-014-0011-5 CrossRefPubMedPubMedCentralGoogle Scholar
  187. Seffens W (2017) Anomalous diffusion within the transcriptome as a bio-inspired computing framework for resilience. Computation 5:32.  https://doi.org/10.3390/computation5030032 CrossRefGoogle Scholar
  188. Sereshki LE, Lomholt MA, Metzler R (2012) A solution to the subdiffusion-efficiency paradox: inactive states enhance reaction efficiency at subdiffusion conditions in living cells. Europhys Lett 97:20008.  https://doi.org/10.1209/0295-5075/97/20008 CrossRefGoogle Scholar
  189. Shendruk TN, Bertrand M, de Haan HW, Harden JL, Slater GW (2015) Simulating the entropic collapse of coarse-grained chromosomes. Biophys J 108:810–820.  https://doi.org/10.1016/j.bpj.2014.11.3487 CrossRefPubMedPubMedCentralGoogle Scholar
  190. Shin J, Cherstvy AG, Metzler R (2014) Mixing and segregation of ring polymers: spatial confinement and molecular crowding effects. New J Phys 16:053047.  https://doi.org/10.1088/1367-2630/16/5/053047 CrossRefGoogle Scholar
  191. Siwiak M, Zielenkiewicz P (2013) Transimulation—protein biosynthesis web service. PLoS One 8:e73943.  https://doi.org/10.1371/journal.pone.0073943 CrossRefPubMedPubMedCentralGoogle Scholar
  192. Smith GR, Xie L, Lee B, Schwartz R (2014) Applying molecular crowding models to simulations of virus capsid assembly in vitro. Biophys J 106:310–320.  https://doi.org/10.1016/j.bpj.2013.11.022 CrossRefPubMedPubMedCentralGoogle Scholar
  193. Smith AE, Zhou LZ, Gorensek AH, Senske M, Pielak GJ (2016) In-cell thermodynamics and a new role for protein surfaces. Proc Natl Acad Sci U S A 113:1725–1730.  https://doi.org/10.1073/pnas.1518620113 CrossRefPubMedPubMedCentralGoogle Scholar
  194. Smith S, Cianci C, Grima R (2017) Macromolecular crowding directs the motion of small molecules inside cells. J R Soc Interface 14:20170047.  https://doi.org/10.1098/rsif.2017.0047 CrossRefPubMedPubMedCentralGoogle Scholar
  195. Song D, Wang W, Ye W, Ji D, Luo R, Chen HF (2017) ff14IDPs force field improving the conformation sampling of intrinsically disordered proteins. Chem Biol Drug Des 89:5–15.  https://doi.org/10.1111/cbdd.12832 CrossRefPubMedGoogle Scholar
  196. Sozański K, Wiśniewska A, Kalwarczyk T, Hołyst R (2013) Activation energy for mobility of dyes and proteins in polymer solutions: from diffusion of single particles to macroscale flow. Phys Rev Lett 111:228301.  https://doi.org/10.1103/PhysRevLett.111.228301 CrossRefPubMedGoogle Scholar
  197. Staněk D, Fox AH (2017) Nuclear bodies: news insights into structure and function. Curr Opin Cell Biol 46:94–101.  https://doi.org/10.1016/j.ceb.2017.05.001 CrossRefPubMedGoogle Scholar
  198. Staneva I, Frenkel D (2015) The role of non-specific interactions in a patchy model of protein crystallization. J Chem Phys 143:194511.  https://doi.org/10.1063/1.4935369 CrossRefPubMedGoogle Scholar
  199. Starzyk A, Wojciechowski M, Cieplak M (2016) Structural fluctuations and thermal stability of proteins in crowded environments: effects of the excluded volume. Phys Biol 13:066002.  https://doi.org/10.1088/1478-3975/13/6/066002 CrossRefPubMedGoogle Scholar
  200. Stefferson MW, Norris SL, Vernerey FJ, Betterton MD, Hough LE (2017) Effects of soft interactions and bound mobility on diffusion in crowded environments: a model of sticky and slippery obstacles. Phys Biol 14:045008.  https://doi.org/10.1088/1478-3975/aa7869 CrossRefPubMedPubMedCentralGoogle Scholar
  201. Sukenik S, Sapir L, Gilman-Politi R, Harries D (2013) Diversity in the mechanisms of cosolute action on biomolecular processes. Faraday Discuss 160:225–237.  https://doi.org/10.1039/C2FD20101A CrossRefPubMedGoogle Scholar
  202. Sun L, Fang J (2016) Macromolecular crowding effect is critical for maintaining SIRT1’s nuclear localization in cancer cells. Cell Cycle 15:2647–2655.  https://doi.org/10.1080/15384101.2016.1211214 CrossRefPubMedPubMedCentralGoogle Scholar
  203. Tachikawa M, Mochizuki A (2017) Golgi apparatus self-organizes into the characteristic shape via postmitotic reassembly dynamics. Proc Natl Acad Sci 114:5177–5182.  https://doi.org/10.1073/pnas.1619264114 CrossRefPubMedGoogle Scholar
  204. Takada S (2012) Coarse-grained molecular simulations of large biomolecules. Curr Opin Struct Biol 22:130–137.  https://doi.org/10.1016/j.sbi.2012.01.010 CrossRefPubMedGoogle Scholar
  205. Tanaka T, Hori N, Takada S (2015) How co-translational folding of multi-domain protein is affected by elongation schedule: molecular simulations. PLoS Comput Biol 11:e1004356.  https://doi.org/10.1371/journal.pcbi.1004356 CrossRefPubMedPubMedCentralGoogle Scholar
  206. Terakawa T, Higo J, Takada S (2014) Multi-scale ensemble modeling of modular proteins with intrinsically disordered linker regions: application to p53. Biophys J 107:721–729.  https://doi.org/10.1016/j.bpj.2014.06.026 CrossRefPubMedPubMedCentralGoogle Scholar
  207. Theillet F-X, Binolfi A, Frembgen-Kesner T et al (2014) Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chem Rev 114:6661–6714.  https://doi.org/10.1021/cr400695p CrossRefPubMedPubMedCentralGoogle Scholar
  208. Tokuyama M, Moriki T, Kimura Y (2011) Self-diffusion of biomolecules in solution. Phys Rev E Stat Nonlinear Soft Matter Phys 83:051402.  https://doi.org/10.1103/PhysRevE.83.051402 CrossRefGoogle Scholar
  209. Tomita M (2001) Whole-cell simulation: a grand challenge of the 21st century. Trends Biotechnol 19:205–210.  https://doi.org/10.1016/S0167-7799(01)01636-5 CrossRefPubMedGoogle Scholar
  210. Tozzini V (2005) Coarse-grained models for proteins. Curr Opin Struct Biol 15:144–150.  https://doi.org/10.1016/j.sbi.2005.02.005 CrossRefPubMedGoogle Scholar
  211. Tozzini V (2010) Multiscale modeling of proteins. Acc Chem Res 43:220–230.  https://doi.org/10.1021/ar9001476 CrossRefPubMedGoogle Scholar
  212. Trovato F, O’Brien EP (2016) Insights into cotranslational nascent protein behavior from computer simulations. Annu Rev Biophys 45:345–369.  https://doi.org/10.1146/annurev-biophys-070915-094153 CrossRefPubMedGoogle Scholar
  213. Trovato F, O’Brien EP (2017) Fast protein translation can promote co- and posttranslational folding of misfolding-prone proteins. Biophys J 112:1807–1819.  https://doi.org/10.1016/j.bpj.2017.04.006 CrossRefPubMedPubMedCentralGoogle Scholar
  214. Trovato F, Tozzini V (2008) Supercoiling and local denaturation of plasmids with a minimalist DNA model. J Phys Chem B 112:13197–13200.  https://doi.org/10.1021/jp807085d CrossRefPubMedGoogle Scholar
  215. Trovato F, Tozzini V (2012) Minimalist models for biopolymers: open problems, latest advances and perspectives. Am Inst Phys Conf Ser 1456:187–200.  https://doi.org/10.1063/1.4730659 CrossRefGoogle Scholar
  216. Trovato F, Tozzini V (2014) Diffusion within the cytoplasm: a mesoscale model of interacting macromolecules. Biophys J 107:2579–2591.  https://doi.org/10.1016/j.bpj.2014.09.043 CrossRefPubMedPubMedCentralGoogle Scholar
  217. Trovato F, Nifosì R, Di Fenza A, Tozzini V (2013) A minimalist model of protein diffusion and interactions: the green fluorescent protein within the cytoplasm. Macromolecules 46:8311–8322.  https://doi.org/10.1021/ma401843h CrossRefGoogle Scholar
  218. Unterberger MJ, Holzapfel GA (2014) Advances in the mechanical modeling of filamentous actin and its cross-linked networks on multiple scales. Biomech Model Mechanobiol 13:1155–1174.  https://doi.org/10.1007/s10237-014-0578-4 CrossRefPubMedGoogle Scholar
  219. van den Berg J, Boersma AJ, Poolman B (2017) Microorganisms maintain crowding homeostasis. Nat Rev Microbiol 15:309–318.  https://doi.org/10.1038/nrmicro.2017.17 CrossRefPubMedGoogle Scholar
  220. Wang M, Brady JF (2016) Spectral Ewald acceleration of Stokesian dynamics for polydisperse suspensions. J Comput Phys 306:443–477.  https://doi.org/10.1016/j.jcp.2015.11.042 CrossRefGoogle Scholar
  221. Wang Q, Cheung MS (2012) A physics-based approach of coarse-graining the cytoplasm of Escherichia coli (CGCYTO). Biophys J 102:2353–2361.  https://doi.org/10.1016/j.bpj.2012.04.010 CrossRefPubMedPubMedCentralGoogle Scholar
  222. Wang E, Wang J, Chen C, Xiao Y (2015) Computational evidence that fast translation speed can increase the probability of cotranslational protein folding. Sci Rep 5:15316.  https://doi.org/10.1038/srep15316 CrossRefPubMedPubMedCentralGoogle Scholar
  223. Wang L-P, McKiernan KA, Gomes J et al (2017a) Building a more predictive protein force field: a systematic and reproducible route to AMBER-FB15. J Phys Chem B 121:4023–4039.  https://doi.org/10.1021/acs.jpcb.7b02320 CrossRefPubMedGoogle Scholar
  224. Wang P, Yu I, Feig M, Sugita Y (2017b) Influence of protein crowder size on hydration structure and dynamics in macromolecular crowding. Chem Phys Lett 671:63–70.  https://doi.org/10.1016/j.cplett.2017.01.012 CrossRefGoogle Scholar
  225. Weber SC, Spakowitz AJ, Theriot JA (2010) Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm. Phys Rev Lett 104:238102.  https://doi.org/10.1103/PhysRevLett.104.238102 CrossRefPubMedPubMedCentralGoogle Scholar
  226. Wei J, Dobnikar J, Curk T, Song F (2016) The effect of attractive interactions and macromolecular crowding on crystallins association. PLoS One 11:e0151159.  https://doi.org/10.1371/journal.pone.0151159 CrossRefPubMedPubMedCentralGoogle Scholar
  227. Wieczorek G, Zielenkiewicz P (2008) Influence of macromolecular crowding on protein–protein association rates—a Brownian dynamics study. Biophys J 95:5030–5036.  https://doi.org/10.1529/biophysj.108.136291 CrossRefPubMedPubMedCentralGoogle Scholar
  228. Wojciechowski M, Cieplak M (2008) Effects of confinement and crowding on folding of model proteins. Biosystems 94:248–252.  https://doi.org/10.1016/j.biosystems.2008.06.016 CrossRefPubMedGoogle Scholar
  229. Wojciechowski M, Szymczak P, Cieplak M (2010) The influence of hydrodynamic interactions on protein dynamics in confined and crowded spaces—assessment in simple models. Phys Biol 7:046011.  https://doi.org/10.1088/1478-3975/7/4/046011 CrossRefPubMedGoogle Scholar
  230. Xia T, Li N, Fang X (2013) Single-molecule fluorescence imaging in living cells. Annu Rev Phys Chem 64:459–480.  https://doi.org/10.1146/annurev-physchem-040412-110127 CrossRefPubMedGoogle Scholar
  231. Yu I, Mori T, Ando T et al (2016) Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm. Elife 5:e19274.  https://doi.org/10.7554/eLife.19274 CrossRefPubMedPubMedCentralGoogle Scholar
  232. Zheng W, Wen H (2017) A survey of coarse-grained methods for modeling protein conformational transitions. Curr Opin Struct Biol 42:24–30.  https://doi.org/10.1016/j.sbi.2016.10.008 CrossRefPubMedGoogle Scholar
  233. Zhou H-X, Rivas G, Minton AP (2008) Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu Rev Biophys 37:375–397.  https://doi.org/10.1146/annurev.biophys.37.032807.125817 CrossRefPubMedPubMedCentralGoogle Scholar
  234. Zhu L, Brangwynne CP (2015) Nuclear bodies: the emerging biophysics of nucleoplasmic phases. Curr Opin Cell Biol 34:23–30.  https://doi.org/10.1016/j.ceb.2015.04.003 CrossRefPubMedPubMedCentralGoogle Scholar
  235. Zimmerman SB, Trach SO (1991) Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J Mol Biol 222:599–620.  https://doi.org/10.1016/0022-2836(91)90499-V CrossRefPubMedGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceFreie Universität BerlinBerlinGermany
  2. 2.Nephrology and Dialysis UnitUSL Toscana Nord OvestLido di CamaioreItaly

Personalised recommendations