Advertisement

Biophysical Reviews

, Volume 9, Issue 6, pp 861–876 | Cite as

Conversion of microbial rhodopsins: insights into functionally essential elements and rational protein engineering

  • Akimasa Kaneko
  • Keiichi Inoue
  • Keiichi Kojima
  • Hideki Kandori
  • Yuki SudoEmail author
Review

Abstract

Technological progress has enabled the successful application of functional conversion to a variety of biological molecules, such as nucleotides and proteins. Such studies have revealed the functionally essential elements of these engineered molecules, which are difficult to characterize at the level of an individual molecule. The functional conversion of biological molecules has also provided a strategy for their rational and atomistic design. The engineered molecules can be used in studies to improve our understanding of their biological functions and to develop protein-based tools. In this review, we introduce the functional conversion of membrane-embedded photoreceptive retinylidene proteins (also called rhodopsins) and discuss these proteins mainly on the basis of results obtained from our own studies. This information provides insights into the molecular mechanism of light-induced protein functions and their use in optogenetics, a technology which involves the use of light to control biological activities.

Keywords

Rhodopsin Energy conversion Signal transduction Membrane protein Retinal 

Notes

Acknowledgements

Our original publications were supported by a Grant-in-Aid from the Japanese Ministry of Education, Science, Technology, Sports and Cultures (KAKENHI) to KI, HK and YS. This work was also supported by JST-CREST and AMED to YS. We thank “DASS Manuscript” (http://www.dass-ms.com/home.html) for the English language review.

Compliance with ethical standards

Conflict of interest

Akimasa Kaneko declares that he has no conflict of interest. Keiichi Inoue declares that he has no conflict of interest. Keiichi Kojima declares that he has no conflict of interest. Hideki Kandori declares that he has no conflict of interest. Yuki Sudo declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Airan RD, Thompson KR, Fenno LE, Bernstein H, Deisseroth K (2009) Temporally precise in vivo control of intracellular signalling. Nature 458:1025–1029PubMedGoogle Scholar
  2. Avelar GM, Schumacher RI, Zaini PA, Leonard G, Richards TA, Gomes SL (2014) A rhodopsin-guanylyl cyclase gene fusion functions in visual perception in a fungus. Curr Biol 24:1234–1240PubMedPubMedCentralGoogle Scholar
  3. Béjà O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich SB, Gates CM, Feldman RA, Spudich JL, Spudich EN, DeLong EF (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906PubMedGoogle Scholar
  4. Béjà O, Lanyi JK (2014) Nature's toolkit for microbial rhodopsin ion pumps. Proc Natl Acad Sci USA 111:6538–6539PubMedGoogle Scholar
  5. Balashov SP, Lanyi JK (2007) Xanthorhodopsin: proton pump with a carotenoid antenna. Cell Mol Life Sci 64:2323–2328PubMedGoogle Scholar
  6. Berndt A, Lee SY, Ramakrishnan C, Deisseroth K (2014) Structure-guided transformation of channelrhodopsin into a light-activated chloride channel. Science 344:420–424PubMedPubMedCentralGoogle Scholar
  7. Berndt A, Lee SY, Wietek J, Ramakrishnan C, Steinberg EE, Rashid AJ, Kim H, Park S, Santoro A, Frankland PW, Iyer SM, Pak S, Ahrlund-Richter S, Delp SL, Malenka RC, Josselyn SA, Carlen M, Hegemann P, Deisseroth K (2016) Structural foundations of optogenetics: determinants of channelrhodopsin ion selectivity. Proc Natl Acad Sci USA 113:822–829PubMedGoogle Scholar
  8. Bogomolni RA, Spudich JL (1982) Identification of a third rhodopsin-like pigment in phototactic Halobacterium halobium. Proc Natl Acad Sci USA 79:6250–6254PubMedGoogle Scholar
  9. Bogomolni RA, Stoeckenius W, Szundi I, Perozo E, Olson KD, Spudich JL (1994) Removal of transducer HtrI allows electrogenic proton translocation by sensory rhodopsin I. Proc Natl Acad Sci USA 91:10188–10192PubMedGoogle Scholar
  10. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268PubMedGoogle Scholar
  11. Braiman MS, Mogi T, Marti T, Stern LJ, Khorana HG, Rothschild KJ (1988) Vibrational spectroscopy of bacteriorhodopsin mutants: light-driven proton transport involves protonation changes of aspartic acid residues 85, 96, and 212. Biochemistry 27:8516–8520PubMedGoogle Scholar
  12. Brown LS, Ernst OP (2017) Recent advances in biophysical studies of rhodopsins—oligomerization, folding, and structure. Biochim Biophys Acta 1865:1512–1521Google Scholar
  13. Choe HW, Kim YJ, Park JH, Morizumi T, Pai EF, Krauss N, Hofmann KP, Scheerer P, Ernst OP (2011) Crystal structure of metarhodopsin II. Nature 471:651–655PubMedGoogle Scholar
  14. Deisseroth K (2015) Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci 18:1213–1225PubMedPubMedCentralGoogle Scholar
  15. Doi S, Tsukamoto T, Yoshizawa S, Sudo Y (2017) An inhibitory role of Arg-84 in anion channelrhodopsin-2 expressed in Escherichia coli. Sci Rep 7:41879Google Scholar
  16. Drew D, Boudker O (2016) Shared molecular mechanisms of membrane transporters. Annu Rev Biochem 85:543–572PubMedGoogle Scholar
  17. Eisenhauer K, Kuhne J, Ritter E, Berndt A, Wolf S, Freier E, Bartl F, Hegemann P, Gerwert K (2012) In channelrhodopsin-2 Glu-90 is crucial for ion selectivity and is deprotonated during the photocycle. J Biol Chem 287:6904–6911PubMedPubMedCentralGoogle Scholar
  18. Ernst OP, Sanchez Murcia PA, Daldrop P, Tsunoda SP, Kateriya S, Hegemann P (2008) Photoactivation of channelrhodopsin. J Biol Chem 283:1637–1643PubMedGoogle Scholar
  19. Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown LS, Kandori H (2014) Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev 114:126–163PubMedGoogle Scholar
  20. Farrens DL, Altenbach C, Yang K, Hubbell WL, Khorana HG (1996) Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274:768–770PubMedGoogle Scholar
  21. Geiser AH, Sievert MK, Guo LW, Grant JE, Krebs MP, Fotiadis D, Engel A, Ruoho AE (2006) Bacteriorhodopsin chimeras containing the third cytoplasmic loop of bovine rhodopsin activate transducin for GTP/GDP exchange. Protein Sci 15:1679–1690PubMedPubMedCentralGoogle Scholar
  22. Govorunova EG, Spudich EN, Lane CE, Sineshchekov OA, Spudich JL (2011) New channelrhodopsin with a red-shifted spectrum and rapid kinetics from Mesostigma viride. MBio 2:e00115–e00111PubMedPubMedCentralGoogle Scholar
  23. Govorunova EG, Sineshchekov OA, Janz R, Liu X, Spudich JL (2015) Natural light-gated anion channels: a family of microbial rhodopsins for advanced optogenetics. Science 349:647–650PubMedPubMedCentralGoogle Scholar
  24. Govorunova EG, Sineshchekov OA, Li H, Spudich JL (2017) Microbial rhodopsins: diversity, mechanisms, and Optogenetic applications. Annu Rev Biochem 86:845–872PubMedPubMedCentralGoogle Scholar
  25. Grote M, Engelhard M, Hegemann P (2014) Of ion pumps, sensors and channels - perspectives on microbial rhodopsins between science and history. Biochim Biophys Acta 1837:533–545PubMedGoogle Scholar
  26. Gushchin I, Shevchenko V, Polovinkin V, Kovalev K, Alekseev A, Round E, Borshchevskiy V, Balandin T, Popov A, Gensch T, Fahlke C, Bamann C, Willbold D, Buldt G, Bamberg E, Gordeliy V (2015) Crystal structure of a light-driven sodium pump. Nat Struct Mol Biol 22:390–395PubMedGoogle Scholar
  27. Hasemi T, Kikukawa T, Kamo N, Demura M (2016) Characterization of a cyanobacterial chloride-pumping rhodopsin and its conversion into a proton pump. J Biol Chem 291:355–362PubMedGoogle Scholar
  28. Havelka WA, Henderson R, Oesterhelt D (1995) Three-dimensional structure of halorhodopsin at 7 Å resolution. J Mol Biol 247:726–738PubMedGoogle Scholar
  29. Hegemann P (2008) Algal sensory photoreceptors. Annu Rev Plant Biol 59:167–189PubMedGoogle Scholar
  30. Hoff WD, Jung KH, Spudich JL (1997) Molecular mechanism of photosignaling by archaeal sensory rhodopsins. Annu Rev Biophys Biomol Struct 26:223–258PubMedGoogle Scholar
  31. Honda N, Tsukamoto T, Sudo Y (2017) Comparative evaluation of the stability of seven-transmembrane microbial rhodopsins to various physicochemical stimuli. Chem Phys Lett 682:6–14Google Scholar
  32. Hosaka T, Yoshizawa S, Nakajima Y, Ohsawa N, Hato M, DeLong EF, Kogure K, Yokoyama S, Kimura-Someya T, Iwasaki W, Shirouzu M (2016) Structural mechanism for light-driven transport by a new type of chloride ion pump, Nonlabens marinus rhodopsin-3. J Biol Chem 291:17488–17495PubMedGoogle Scholar
  33. Hou SY, Govorunova EG, Ntefidou M, Lane CE, Spudich EN, Sineshchekov OA, Spudich JL (2012) Diversity of Chlamydomonas channelrhodopsins. Photochem Photobiol 88:119–128PubMedGoogle Scholar
  34. Huang PS, Boyken SE, Baker D (2016) The coming of age of de novo protein design. Nature 537:320–327PubMedGoogle Scholar
  35. Imamoto Y, Shichida Y, Hirayama J, Tomioka H, Kamo N, Yoshizawa S (1992) Nanosecond laser photolysis of phoborhodopsin: from Natronobacterium pharaonis appearance of KL and L intermediates in the photocycle at room temperature. Photochem Photobiol 56:1129–1134Google Scholar
  36. Inoue K, Ono H, Abe-Yoshizumi R, Yoshizawa S, Ito H, Kogure K, Kandori H (2013a) A light-driven sodium ion pump in marine bacteria. Nat Commun 4:1678PubMedGoogle Scholar
  37. Inoue K, Tsukamoto T, Sudo Y (2013b) Molecular and evolutionary aspects of microbial sensory rhodopsins. Biochim Biophys Acta 1837:562–577PubMedGoogle Scholar
  38. Inoue K, Kato Y, Kandori H (2014a) Light-driven ion-translocating rhodopsins in marine bacteria. Trends Microbiol 23:91–98Google Scholar
  39. Inoue K, Koua FH, Kato Y, Abe-Yoshizumi R, Kandori H (2014b) Spectroscopic study of a light-driven chloride ion pump from marine bacteria. J Phys Chem B 118:11190–11199PubMedGoogle Scholar
  40. Inoue K, Tsukamoto T, Shimono K, Suzuki Y, Miyauchi S, Hayashi S, Kandori H, Sudo Y (2015) Converting a light-driven proton pump into a light-gated proton channel. J Am Chem Soc 137:3291–3299PubMedGoogle Scholar
  41. Inoue K, Ito S, Kato Y, Nomura Y, Shibata M, Uchihashi T, Tsunoda SP, Kandori H (2016a) A natural light-driven inward proton pump. Nat Commun 7:13415PubMedPubMedCentralGoogle Scholar
  42. Inoue K, Nomura Y, Kandori H (2016b) Asymmetric functional conversion of eubacterial light-driven ion pumps. J Biol Chem 291:9883–9893PubMedPubMedCentralGoogle Scholar
  43. Irieda H, Morita T, Maki K, Homma M, Aiba H, Sudo Y (2012) Photo-induced regulation of the chromatic adaptive gene expression by anabaena sensory rhodopsin. J Biol Chem 287:32485–32493PubMedPubMedCentralGoogle Scholar
  44. Ito S, Kato HE, Taniguchi R, Iwata T, Nureki O, Kandori H (2014) Water-containing hydrogen-bonding network in the active center of channelrhodopsin. J Am Chem Soc 136:3475–3482PubMedGoogle Scholar
  45. Jung KH, Trivedi VD, Spudich JL (2003) Demonstration of a sensory rhodopsin in eubacteria. Mol Microbiol 47:1513–1522PubMedGoogle Scholar
  46. Kanehara K, Yoshizawa S, Tsukamoto T, Sudo Y (2017) A phylogenetically distinctive and extremely heat stable light-driven proton pump from the eubacterium Rubrobacter xylanophilus DSM 9941T. Sci Rep 7:44427Google Scholar
  47. Katayama K, Sekharan S, Sudo Y (2015) Color tuning in retinylidene proteins. In: Yawo H, Kandori H, Koizumi A (eds) Optogenetics: light-sensing proteins and their applications. Springer Japan, Tokyo, 89–107Google Scholar
  48. Kato HE, Zhang F, Yizhar O, Ramakrishnan C, Nishizawa T, Hirata K, Ito J, Aita Y, Tsukazaki T, Hayashi S, Hegemann P, Maturana AD, Ishitani R, Deisseroth K, Nureki O (2012) Crystal structure of the channelrhodopsin light-gated cation channel. Nature 482:369–374PubMedPubMedCentralGoogle Scholar
  49. Kato HE, Inoue K, Abe-Yoshizumi R, Kato Y, Ono H, Konno M, Ishizuka T, Hoque MR, Hososhima S, Kunitomo H, Ito J, Yoshizawa S, Yamashita K, Takemoto M, Nishizawa T, Taniguchi RK, Maturana AD, Iino Y, Yawo H, Ishitani R, Kandori H, Nureki O (2015a) Structural basis for Na+ transport mechanism by a light-driven Na+ pump. Nature 521:48–53PubMedGoogle Scholar
  50. Kato HE, Kamiya M, Sugo S, Ito J, Taniguchi R, Orito A, Hirata K, Inutsuka A, Yamanaka A, Maturana AD, Ishitani R, Sudo Y, Hayashi S, Nureki O (2015b) Atomistic design of microbial opsin-based blue-shifted optogenetics tools. Nat Commun 6:7177PubMedPubMedCentralGoogle Scholar
  51. Kitajima-Ihara T, Furutani Y, Suzuki D, Ihara K, Kandori H, Homma M, Sudo Y (2008) Salinibacter sensory rhodopsin: sensory rhodopsin I-like protein from a eubacterium. J Biol Chem 283:23533–23541PubMedPubMedCentralGoogle Scholar
  52. Klare JP, Bordignon E, Engelhard M, Steinhoff HJ (2004) Sensory rhodopsin II and bacteriorhodopsin: light activated helix F movement. Photochem Photobiol Sci 3:543–547PubMedGoogle Scholar
  53. Konno M, Kato Y, Kato HE, Inoue K, Nureki O, Kandori H (2016) Mutant of a light-driven sodium ion pump can transport cesium ions. J Phys Chem Lett 7:51–55PubMedGoogle Scholar
  54. Kouyama T, Kanada S, Takeguchi Y, Narusawa A, Murakami M, Ihara K (2010) Crystal structure of the light-driven chloride pump halorhodopsin from Natronomonas pharaonis. J Mol Biol 396:564–579PubMedGoogle Scholar
  55. Koyanagi M, Terakita A (2008) Gq-coupled rhodopsin subfamily composed of invertebrate visual pigment and melanopsin. Photochem Photobiol 84:1024–1030PubMedGoogle Scholar
  56. Kurihara M, Sudo Y (2015) Microbial rhodopsins: wide distribution, rich diversity and great potential. Biophys Physicobiol 12:121–129PubMedPubMedCentralGoogle Scholar
  57. Lanyi JK (2004) Bacteriorhodopsin. Annu Rev Physiol 66:665–688PubMedGoogle Scholar
  58. Lin JY, Knutsen PM, Muller A, Kleinfeld D, Tsien RY (2013) ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 16:1499–1508PubMedPubMedCentralGoogle Scholar
  59. Lórenz-Fonfría VA, Resler T, Krause N, Nack M, Gossing M, Fischer von Mollard G, Bamann C, Bamberg E, Schlesinger R, Heberle J (2013) Transient protonation changes in channelrhodopsin-2 and their relevance to channel gating. Proc Natl Acad Sci USA 110:E1273–E1281PubMedGoogle Scholar
  60. Lórenz-Fonfría VA, Muders V, Schlesinger R, Heberle J (2014) Changes in the hydrogen-bonding strength of internal water molecules and cysteine residues in the conductive state of channelrhodopsin-1. J Chem Phys 141:22D507PubMedGoogle Scholar
  61. Luck M, Mathes T, Bruun S, Fudim R, Hagedorn R, Tran Nguyen TM, Kateriya S, Kennis JT, Hildebrandt P, Hegemann P (2012) A photochromic histidine kinase rhodopsin (HKR1) that is bimodally switched by ultraviolet and blue light. J Biol Chem 287:40083–40090PubMedPubMedCentralGoogle Scholar
  62. Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK (1999) Structure of bacteriorhodopsin at 1.55 Å resolution. J Mol Biol 291:899–911PubMedGoogle Scholar
  63. Marti T, Rosselet SJ, Otto H, Heyn MP, Khorana HG (1991) The retinylidene Schiff base counterion in bacteriorhodopsin. J Biol Chem 266:18674–18683PubMedGoogle Scholar
  64. Matsuno-Yagi A, Mukohata Y (1977) Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation. Biochem Biophys Res Commun 78:237–243PubMedGoogle Scholar
  65. Miranda MR, Choi AR, Shi L, Bezerra AG Jr, Jung KH, Brown LS (2009) The photocycle and proton translocation pathway in a cyanobacterial ion-pumping rhodopsin. Biophys J 96:1471–1481PubMedPubMedCentralGoogle Scholar
  66. Mogi T, Stern LJ, Marti T, Chao BH, Khorana HG (1988) Aspartic acid substitutions affect proton translocation by bacteriorhodopsin. Proc Natl Acad Sci USA 85:4148–4152PubMedGoogle Scholar
  67. Moukhametzianov R, Klare JP, Efremov R, Baeken C, Goppner A, Labahn J, Engelhard M, Buldt G, Gordeliy VI (2006) Development of the signal in sensory rhodopsin and its transfer to the cognate transducer. Nature 440:115–119PubMedGoogle Scholar
  68. Muders V, Kerruth S, Lorenz-Fonfria VA, Bamann C, Heberle J, Schlesinger R (2014) Resonance Raman and FTIR spectroscopic characterization of the closed and open states of channelrhodopsin-1. FEBS Lett 588:2301–2306PubMedGoogle Scholar
  69. Muroda K, Nakashima K, Shibata M, Demura M, Kandori H (2012) Protein-bound water as the determinant of asymmetric functional conversion between light-driven proton and chloride pumps. Biochemistry 51:4677–4684PubMedGoogle Scholar
  70. Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398PubMedGoogle Scholar
  71. Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA 100:13940–13945PubMedGoogle Scholar
  72. Nakatsuma A, Yamashita T, Sasaki K, Kawanabe A, Inoue K, Furutani Y, Shichida Y, Kandori H (2011) Chimeric microbial rhodopsins containing the third cytoplasmic loop of bovine rhodopsin. Biophys J 100:1874–1882PubMedPubMedCentralGoogle Scholar
  73. Niho A, Yoshizawa S, Tsukamoto T, Kurihara M, Tahara S, Nakajima Y, Mizuno M, Kuramochi H, Tahara T, Mizutani Y, Sudo Y (2017) Demonstration of a light-driven SO4 2– transporter and its spectroscopic characteristics. J Am Chem Soc 139(12):4376–4389PubMedGoogle Scholar
  74. Oesterhelt D, Stoeckenius W (1971) Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol 233:149–152PubMedGoogle Scholar
  75. Oesterhelt D, Stoeckenius W (1973) Functions of a new photoreceptor membrane. Proc Natl Acad Sci USA 70:2853–2857PubMedGoogle Scholar
  76. Ogren JI, Mamaev S, Russano D, Li H, Spudich JL, Rothschild KJ (2014) Retinal chromophore structure and Schiff base interactions in red-shifted channelrhodopsin-1 from Chlamydomonas augustae. Biochemistry 53:3961–3970PubMedPubMedCentralGoogle Scholar
  77. Oka T, Yagi N, Fujisawa T, Kamikubo H, Tokunaga F, Kataoka M (2000) Time-resolved x-ray diffraction reveals multiple conformations in the M-N transition of the bacteriorhodopsin photocycle. Proc Natl Acad Sci USA 97:14278–14282PubMedGoogle Scholar
  78. Olson KD, Zhang XN, Spudich JL (1995) Residue replacements of buried aspartyl and related residues in sensory rhodopsin I: D201N produces inverted phototaxis signals. Proc Natl Acad Sci USA 92:3185–3189PubMedGoogle Scholar
  79. Prigge M, Schneider F, Tsunoda SP, Shilyansky C, Wietek J, Deisseroth K, Hegemann P (2012) Color-tuned channelrhodopsins for multiwavelength optogenetics. J Biol Chem 287:31804–31812PubMedPubMedCentralGoogle Scholar
  80. Racker E, Stoeckenius W (1974) Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation. J Biol Chem 249:662–663PubMedGoogle Scholar
  81. Radu I, Bamann C, Nack M, Nagel G, Bamberg E, Heberle J (2009) Conformational changes of channelrhodopsin-2. J Am Chem Soc 131:7313–7319PubMedGoogle Scholar
  82. Ritter E, Stehfest K, Berndt A, Hegemann P, Bartl FJ (2008) Monitoring light-induced structural changes of Channelrhodopsin-2 by UV-visible and Fourier transform infrared spectroscopy. J Biol Chem 283:35033–35041PubMedPubMedCentralGoogle Scholar
  83. Sasaki J, Brown LS, Chon YS, Kandori H, Maeda A, Needleman R, Lanyi JK (1995) Conversion of bacteriorhodopsin into a chloride ion pump. Science 269:73–75PubMedGoogle Scholar
  84. Sasaki J, Spudich JL (1999) Proton circulation during the photocycle of sensory rhodopsin II. Biophys J 77:2145–2152PubMedPubMedCentralGoogle Scholar
  85. Sasaki K, Yamashita T, Yoshida K, Inoue K, Shichida Y, Kandori H (2014) Chimeric proton-pumping rhodopsins containing the cytoplasmic loop of bovine rhodopsin. PLoS One 9:e91323PubMedPubMedCentralGoogle Scholar
  86. Schneider F, Grimm C, Hegemann P (2015) Biophysics of channelrhodopsin. Annu Rev Biophys 44:167–186PubMedGoogle Scholar
  87. Schobert B, Lanyi JK (1982) Halorhodopsin is a light-driven chloride pump. J Biol Chem 257:10306–10313PubMedGoogle Scholar
  88. Shibata M, Yamashita H, Uchihashi T, Kandori H, Ando T (2010) High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin. Nat Nanotechnol 5:208–212PubMedGoogle Scholar
  89. Shichida Y, Imai H (1998) Visual pigment: G-protein-coupled receptor for light signals. Cell Mol Life Sci 54:1299–1315PubMedGoogle Scholar
  90. Shimono K, Ikeura Y, Sudo Y, Iwamoto M, Kamo N (2001) Environment around the chromophore in pharaonis phoborhodopsin: mutation analysis of the retinal binding site. Biochim Biophys Acta 1515:92–100PubMedGoogle Scholar
  91. Shimono K, Hayashi T, Ikeura Y, Sudo Y, Iwamoto M, Kamo N (2003) Importance of the broad regional interaction for spectral tuning in Natronobacterium pharaonis phoborhodopsin (sensory rhodopsin II). J Biol Chem 278:23882–23889PubMedGoogle Scholar
  92. Sineshchekov OA, Jung KH, Spudich JL (2002) Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas Reinhardtii. Proc Natl Acad Sci USA 99:8689–8694PubMedGoogle Scholar
  93. Sineshchekov OA, Sasaki J, Phillips BJ, Spudich JL (2008) A Schiff base connectivity switch in sensory rhodopsin signaling. Proc Natl Acad Sci USA 105:16159–16164PubMedGoogle Scholar
  94. Slotboom DJ (2014) Structural and mechanistic insights into prokaryotic energy-coupling factor transporters. Nat Rev Microbiol 12:79–87PubMedGoogle Scholar
  95. Spudich JL, Bogomolni RA (1984) Mechanism of colour discrimination by a bacterial sensory rhodopsin. Nature 312:509–513PubMedPubMedCentralGoogle Scholar
  96. Spudich JL, Jung K-H (2005) Microbial rhodopsin: phylogenetic and functional diversity .Handbook of photosensory receptors. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  97. Subramaniam S, Gerstein M, Oesterhelt D, Henderson R (1993) Electron diffraction analysis of structural changes in the photocycle of bacteriorhodopsin. EMBO J 12:1–8PubMedPubMedCentralGoogle Scholar
  98. Sudo Y, Spudich JL (2006) Three strategically placed hydrogen-bonding residues convert a proton pump into a sensory receptor. Proc Natl Acad Sci USA 103:16129–16134PubMedGoogle Scholar
  99. Sudo Y, Iwamoto M, Shimono K, Kamo N (2001a) Pharaonis phoborhodopsin binds to its cognate truncated transducer even in the presence of a detergent with a 1:1 stoichiometry. Photochem Photobiol 74:489–494PubMedGoogle Scholar
  100. Sudo Y, Iwamoto M, Shimono K, Sumi M, Kamo N (2001b) Photo-induced proton transport of pharaonis phoborhodopsin (sensory rhodopsin II) is ceased by association with the transducer. Biophys J 80:916–922PubMedPubMedCentralGoogle Scholar
  101. Sudo Y, Furutani Y, Wada A, Ito M, Kamo N, Kandori H (2005a) Steric constraint in the primary photoproduct of an archaeal rhodopsin from regiospecific perturbation of C-D stretching vibration of the retinyl chromophore. J Am Chem Soc 127:16036–16037PubMedGoogle Scholar
  102. Sudo Y, Okuda H, Yamabi M, Fukuzaki Y, Mishima M, Kamo N, Kojima C (2005b) Linker region of a halobacterial transducer protein interacts directly with its sensor retinal protein. Biochemistry 44:6144–6152PubMedGoogle Scholar
  103. Sudo Y, Yamabi M, Kato S, Hasegawa C, Iwamoto M, Shimono K, Kamo N (2006) Importance of specific hydrogen bonds of archaeal rhodopsins for the binding to the transducer protein. J Mol Biol 357:1274–1282PubMedGoogle Scholar
  104. Sudo Y, Furutani Y, Spudich JL, Kandori H (2007) Early photocycle structural changes in a bacteriorhodopsin mutant engineered to transmit photosensory signals. J Biol Chem 282:15550–15558PubMedGoogle Scholar
  105. Sudo Y, Ihara K, Kobayashi S, Suzuki D, Irieda H, Kikukawa T, Kandori H, Homma M (2011a) A microbial rhodopsin with a unique retinal composition shows both sensory rhodopsin II and bacteriorhodopsin-like properties. J Biol Chem 286:5967–5976PubMedGoogle Scholar
  106. Sudo Y, Yuasa Y, Shibata J, Suzuki D, Homma M (2011b) Spectral tuning in sensory rhodopsin I from Salinibacter ruber. J Biol Chem 286:11328–11336PubMedPubMedCentralGoogle Scholar
  107. Sudo Y, Okazaki A, Ono H, Yagasaki J, Sugo S, Kamiya M, Reissig L, Inoue K, Ihara K, Kandori H, Takagi S, Hayashi S (2013) A blue-shifted light-driven proton pump for neural silencing. J Biol Chem 288:20624–20632PubMedPubMedCentralGoogle Scholar
  108. Suzuki D, Furutani Y, Inoue K, Kikukawa T, Sakai M, Fujii M, Kandori H, Homma M, Sudo Y (2009) Effects of chloride ion binding on the photochemical properties of salinibacter sensory rhodopsin I. J Mol Biol 392:48–62PubMedGoogle Scholar
  109. Suzuki D, Irieda H, Homma M, Kawagishi I, Sudo Y (2010) Phototactic and chemotactic signal transduction by transmembrane receptors and transducers in microorganisms. Sensors (Basel) 10:4010–4039Google Scholar
  110. Swartz TE, Szundi I, Spudich JL, Bogomolni RA (2000) New photointermediates in the two photon signaling pathway of sensory rhodopsin-I. Biochemistry 39:15101–15109PubMedGoogle Scholar
  111. Takahashi T, Mochizuki Y, Kamo N, Kobatake Y (1985) Evidence that the long-lifetime photointermediate of s-rhodopsin is a receptor for negative phototaxis in Halobacterium halobium. Biochem Biophys Res Commun 127:99–105PubMedGoogle Scholar
  112. Takahashi T, Yan B, Mazur P, Derguini F, Nakanishi K, Spudich JL (1990) Color regulation in the archaebacterial phototaxis receptor phoborhodopsin (sensory rhodopsin II). Biochemistry 29:8467–8474PubMedGoogle Scholar
  113. Tittor J, Haupts U, Haupts C, Oesterhelt D, Becker A, Bamberg E (1997) Chloride and proton transport in bacteriorhodopsin mutant D85T: different modes of ion translocation in a retinal protein. J Mol Biol 271:405–416PubMedGoogle Scholar
  114. Tsukamoto T, Inoue K, Kandori H, Sudo Y (2013) Thermal and spectroscopic characterization of a proton pumping rhodopsin from an extreme thermophile. J Biol Chem 288:21581–21592PubMedPubMedCentralGoogle Scholar
  115. Tsukamoto T, Mizutani K, Hasegawa T, Takahashi M, Honda N, Hashimoto N, Shimono K, Yamashita K, Yamamoto M, Miyauchi S, Takagi S, Hayashi S, Murata T, Sudo Y (2016) X-ray crystallographic structure of Thermophilic Rhodopsin: implications for high thermal stability and optogenetic function. J Biol Chem 291:12223–12232PubMedPubMedCentralGoogle Scholar
  116. Váró G (2000) Analogies between halorhodopsin and bacteriorhodopsin. Biochim Biophys Acta 1460:220–229PubMedGoogle Scholar
  117. Váró G, Brown LS, Sasaki J, Kandori H, Maeda A, Needleman R, Lanyi JK (1995a) Light-driven chloride ion transport by halorhodopsin from Natronobacterium pharaonis. 1. The photochemical cycle. Biochemistry 34:14490–14499PubMedGoogle Scholar
  118. Váró G, Zimányi L, Fan X, Sun L, Needleman R, Lanyi JK (1995b) Photocycle of halorhodopsin from Halobacterium salinarium. Biophys J 68:2062–2072PubMedPubMedCentralGoogle Scholar
  119. Váró G, Brown LS, Needleman R, Lanyi JK (1996) Proton transport by halorhodopsin. Biochemistry 35:6604–6611PubMedGoogle Scholar
  120. Wegener AA, Klare JP, Engelhard M, Steinhoff HJ (2001) Structural insights into the early steps of receptor-transducer signal transfer in archaeal phototaxis. EMBO J 20:5312–5319PubMedPubMedCentralGoogle Scholar
  121. Wietek J, Wiegert JS, Adeishvili N, Schneider F, Watanabe H, Tsunoda SP, Vogt A, Elstner M, Oertner TG, Hegemann P (2014) Conversion of channelrhodopsin into a light-gated chloride channel. Science 344:409–412PubMedGoogle Scholar
  122. Yagasaki J, Suzuki D, Ihara K, Inoue K, Kikukawa T, Sakai M, Fujii M, Homma M, Kandori H, Sudo Y (2010) Spectroscopic studies of a sensory rhodopsin I homologue from the archaeon Haloarcula vallismortis. Biochemistry 49:1183–1190PubMedGoogle Scholar
  123. Yamashita T, Terakita A, Shichida Y (2000) Distinct roles of the second and third cytoplasmic loops of bovine rhodopsin in G protein activation. J Biol Chem 275:34272–34279PubMedGoogle Scholar
  124. Yan B, Takahashi T, Johnson R, Spudich JL (1991) Identification of signaling states of a sensory receptor by modulation of lifetimes of stimulus-induced conformations: the case of sensory rhodopsin II. Biochemistry 30:10686–10692PubMedGoogle Scholar
  125. Ye S, Zaitseva E, Caltabiano G, Schertler GF, Sakmar TP, Deupi X, Vogel R (2010) Tracking G-protein-coupled receptor activation using genetically encoded infrared probes. Nature 464:1386–1389PubMedGoogle Scholar
  126. Yoshizawa S, Kumagai Y, Kim H, Ogura Y, Hayashi T, Iwasaki W, DeLong EF, Kogure K (2014) Functional characterization of flavobacteria rhodopsins reveals a unique class of light-driven chloride pump in bacteria. Proc Natl Acad Sci USA 111:6732–6737PubMedGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Faculty of Pharmaceutical SciencesOkayama UniversityOkayamaJapan
  2. 2.Department of Frontier MaterialsNagoya Institute of TechnologyNagoyaJapan
  3. 3.OptoBioTechnology Research CenterNagoya Institute of TechnologyNagoyaJapan
  4. 4.Precursory Research for Embryonic Science and Technology (PRESTO)Japan Science and Technology Agency (JST)SaitamaJapan
  5. 5.Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan

Personalised recommendations