Skip to main content

Advertisement

Log in

Experimental and theoretical studies of emodin interacting with a lipid bilayer of DMPC

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Emodin is one of the most abundant anthraquinone derivatives found in nature. It is the active principle of some traditional herbal medicines with known biological activities. In this work, we combined experimental and theoretical studies to reveal information about location, orientation, interaction and perturbing effects of Emodin on lipid bilayers, where we have taken into account the neutral form of the Emodin (EMH) and its anionic/deprotonated form (EM). Using both UV/Visible spectrophotometric techniques and molecular dynamics (MD) simulations, we showed that both EMH and EM are located in a lipid membrane. Additionally, using MD simulations, we revealed that both forms of Emodin are very close to glycerol groups of the lipid molecules, with the EMH inserted more deeply into the bilayer and more disoriented relative to the normal of the membrane when compared with the EM, which is more exposed to interfacial water. Analysis of several structural properties of acyl chains of the lipids in a hydrated pure DMPC bilayer and in the presence of Emodin revealed that both EMH and EM affect the lipid bilayer, resulting in a remarkable disorder of the bilayer in the vicinity of the Emodin. However, the disorder caused by EMH is weaker than that caused by EM. Our results suggest that these disorders caused by Emodin might lead to distinct effects on lipid bilayers including its disruption which are reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland, New York

    Google Scholar 

  • Almeida JG, Preto AJ, Koukos PI, Bonvin AMJJ, Moreira IS (2017) Membrane proteins structures: a review on computational modeling tools. Biochim Biophys Acta 1859:2021–2039

    CAS  Google Scholar 

  • Alves DS, Pérez-Fons L, Estepa A, Micol V (2004) Membrane-related effects underlying the biological activity of the anthraquinones emodin and barbaloin. Biochem Pharmacol 68:549–561

    CAS  PubMed  Google Scholar 

  • Anke H, Kolthum I, Laaatsch H (1980) Metabolic products of microorganisms. 192. The anthraquinones of the Aspergillus glaucus group. II. Biological activity. Arch Microbiol 126:231–236

    CAS  PubMed  Google Scholar 

  • Apostolova E, Krumova S, Tuparev N, Molina MT, Filipova T, Petkanchin I, Taneva SG (2003) Interaction of biological membranes with substituted 1,4-anthraquinones. Colloids Surf B 29:1–12

    CAS  Google Scholar 

  • Barnard DL, Huffman JH, Morris JL, Wood SG, Hughes BG, Sidwell RW (1992) Evaluation of the antiviral activity of anthraquinones, anthrones and anthraquinone derivatives against human cytomegalovirus. Antivir Res 17:63–77

    CAS  PubMed  Google Scholar 

  • Becke AD (1993) Density-functional thermochemistry. III The role of exact exchange. J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  • Bemporad D, Essex JW, Luttmann C (2004) Permeation of small molecules through a lipid Bilayer: a computer simulation study. J Phys Chem B 108:4875–4884

    CAS  Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    CAS  Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman, B (ed) Intermolecular forces. Reidel, Dordrecht

  • Bi S, Zhang H, Qiao C, Sun Y, Liu C (2008) Studies of interaction of emodin and DNA in the presence of ethidium bromide by spectroscopic method. Spectrochim Acta Part A 69:123–129

    Google Scholar 

  • Boggara MB, Krishnamoorti B (2010) Partitioning of nonsteroidal Antiinflammatory drugs in lipid membranes: a molecular dynamics simulation study. Biophys J 98:586–595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Breneman CM, Wiberg KB (1990) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comp Chem 11:361–373

    CAS  Google Scholar 

  • Brown MF (1996) Membrane structure and dynamics studied with NMR spectroscopy. In: Merz K, Roux B (eds) Biological membranes. Birkhäuser, Boston

    Google Scholar 

  • Canuto S, Coutinho K (2000) From hydrogen bond to bulk: Solvation analysis of the n-π* transition of formaldehyde in water. Int J Quantum Chem 77:192–198

    CAS  Google Scholar 

  • Chan TC, Chang CJ, Koonchanok NM, Geahlen RL (1993) Selective inhibition of the growth of ras-transformed human bronchial epithelial cells by emodin, a protein-tyrosine inhibitor. Biochem Biophys Res Commun 193:1152–1158

    CAS  PubMed  Google Scholar 

  • Chen YC, Shen SC, Lee WR, Hsu FL, Lin HY, Ko CH, Tseng SW (2002) Emodin induces apoptosis in human promyeloleukemic HL-60 cells accompanied by activation of caspase 3 cascade but independent of reactive oxygen species production. Biochem Pharmacol 64:1713–1724

    CAS  PubMed  Google Scholar 

  • Choi RJ, Ngoc TM, Bae K, Cho HJ, Kim DD, Chun J, Khan S, Kim YS (2013) Anti-inflammatory properties of anthraquinones and their relationship with the regulation of P-glycoprotein function and expression. Eur J Pharmacol Sci 48:272–281

    CAS  Google Scholar 

  • Costigan SC, Booth PJ, Templer RH (2000) Estimations of lipid bilayer geometry in fluid lamellar phases. Biochim Biophys Acta 1468:41–54

    CAS  PubMed  Google Scholar 

  • Cuendet MA, van Gunsteren WF (2007) On the calculation of velocity-dependent properties in molecular dynamics simulations using the leapfrog integration algorithm. J Chem Phys 127:184102–184110

    PubMed  Google Scholar 

  • da Cunha AR, Duarte EL, Lamy MT, Coutinho K (2014) Protonation/deprotonation process of Emodin in aqueous solution and pKa determination: UV/visible spectrophotometric titration and quantum/molecular mechanics calculations. Chem Phys 440:69–79

    Google Scholar 

  • Davis JE, Rahaman O, Patel S (2009) Molecular dynamics simulations of a DMPC Bilayer using nonadditive interaction models. Biophys J 96:385–402

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Young LR, Dill KA (1988) Solute partitioning into lipid bilayer membranes. Biochemist 27:5281–5289

    Google Scholar 

  • Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods. IX An Extended Gaussian Type Basis for Molecular Orbital Studies of Organic Molecules. J Chem Phys 54:724–728

    CAS  Google Scholar 

  • Dong X, Fu J, Yin X, Cao S, Li X, Lin L, Huyiligegi NJ (2016) Emodin: a review of its pharmacology, Toxicity and Pharmacokinetics. Phytother Res 30:1207–1218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Douliez JP, Léonard A, Dufoure EJ (1995) Restatement of order parameters in biomembranes: calculation of C-C bond order parameters from C-D quadrupolar splittings. Biophys J 68:1727–1739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duarte EL, Oliveira TR, Alves DS, Micol V, Lamy MT (2008) On the interaction of the Anthraquinone Barbaloin with negatively charged DMPG Bilayers. Langmuir 24:4041–4049

    CAS  PubMed  Google Scholar 

  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    CAS  Google Scholar 

  • Fabriciova G, Cortés SS, Ramos JVG, Miskovsky P (2004) Surface-enhanced Raman spectroscopy study of the interaction of the Antitumoral drug Emodin with human serum albumin. Biopolymers 74:125–130

    CAS  PubMed  Google Scholar 

  • Falck E, Hautala JT, Karttunen M, Kinnunen PKJ, Patra M, Saaren-Seppälä H, Vattulainen I, Wiedmer SK, Holopainen JM (2006) Interaction of Fusidic acid with lipid membranes: implications to the mechanism of antibiotic activity. Biophys J 91:1787–1799

    CAS  PubMed  PubMed Central  Google Scholar 

  • Francke B, Moss H, Timbury MC, Hay J (1978) Alkaline DNase activity in cells infected with a temperature-sensitive mutant of herpes simplex virus type 2. J Virol 26:209–213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frisch MJ et al (2004) Gaussian 03. Gaussian, Wallingford, CT

    Google Scholar 

  • Fuchs J, Milbradt R, Zimmer G (1990) Multifunctional analysis of the interaction of anthralin and its metabolites anthraquinone and anthralin dimer with the inner mitochondrial membrane. Arch Dermatol Res 282:47–55

    CAS  PubMed  Google Scholar 

  • Gabdouline RR, Vanderkooi G, Zheng C (1996) Comparison of structures of dimyrstoylphosphatidylcholine in the presence and absence of cholesterol by molecular dynamics simulation. J Phys Chem 96:15942–15946

    Google Scholar 

  • Ghomi M (2012) Applications of Raman spectroscopy to biology, vol 5. IOS, Amsterdam

    Google Scholar 

  • Gierula MP, Takaoka Y, Miyagawa H, Kitamura K, Kusumi A (1999) Charge pairing of headgroups in phosphatidylcholine membranes: a molecular dynamics simulation study. Biophys J 73:1228–1240

    Google Scholar 

  • Goldstein EB, Evron Z, Frenkel M, Cohen K, Meiron KN, Peer D, Roichman Y, Flescher E, Fridman M (2011) Targeting Anthracycline-resistant tumor cells with synthetic aloe-Emodin glycosides. ACS Med Chem Lett 2:528–531

    Google Scholar 

  • Heimburg T (2007) Thermal biophysics of membranes. Wiley-VCH, Weinheim

    Google Scholar 

  • Hernandez M, Recio G, Palma RJM, Ramos JVG, Domingo C, Sevilla P (2012) Surface enhanced fluorescence of anti-tumoral drug emodin adsorbed on silver nanoparticles and loaded on porous silicon. Nanoscale Res Lett 7:364–371

    PubMed  PubMed Central  Google Scholar 

  • Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    CAS  Google Scholar 

  • Hofsäß C, Lindahl E, Edholm O (2003) Molecular dynamics simulations of Phospholipid Bilayers with cholesterol. Biophys J 84:2192–2206

    PubMed  PubMed Central  Google Scholar 

  • Högberg CJ, Maliniak A, Lyubartsev AP (2007) Dynamical and structural properties of charged and uncharged lidocaine in a lipid bilayer. Biophys Chem 125:416–424

    PubMed  Google Scholar 

  • Hsiang CY, Ho TY (2008) Emodin is a novel alkaline nuclease inhibitor that suppresses herpes simplex virus type 1 yields in cell cultures. Br J Pharmacol 155:227–235

    CAS  PubMed  Google Scholar 

  • Huang HC, Chu SH, Chao PD (1991) Vasorelaxants from Chinese herbs, emodin and scoparone, possess immunosuppressive properties. Eur J Pharmacol 198:211–213

    CAS  PubMed  Google Scholar 

  • Huang Q, Shen HM, Ong CN (2004) Inhibitory effect of emodin on tumor invasion through suppression of activator protein-1 and nuclear factor-kappaB. Biochem Pharmacol 68:361–371

    CAS  PubMed  Google Scholar 

  • Huang Q, Shen HM, Ong CN (2005) Emodin inhibits tumor cell migration through suppression of the phosphatidylinositol 3-kinase-Cdc42/Rac1 pathway. Cell Mol Life Sci 62:1167–1175

    CAS  PubMed  Google Scholar 

  • Huang Q, Shen HM, Shui G (2006) Emodin inhibits tumor cell adhesion through disruption of the membrane lipid raft-associated Integrin signaling pathway. Cancer Res 66:5807–5815

    CAS  PubMed  Google Scholar 

  • Huang W, Lin Z, van Gunsteren WF (2011) Validation of the GROMOS 54A7 force field with respect to beta-peptide folding. J Chem Theory Comput 7:1237–1243

    CAS  PubMed  Google Scholar 

  • Imamura Y, Otsuka T, Nakai H (2007) Description of Core excitations by time-dependent density functional theory with local density approximation, generalized gradient approximation, meta-generalized gradient approximation, and hybrid Hunctionals. J Comput Chem 28:2067–2074

    CAS  PubMed  Google Scholar 

  • Izhaki I (2002) Emodin – a secondary metabolite with multiple ecological functions in higher plants. New Phytol 155:205–217

    CAS  Google Scholar 

  • Jalili S, Saeedi M (2016) Study of curcumin behavior in two different lipid bilayer models of liposomal curcumin using molecular dynamics simulation. J Biomol Struct Dyn 34:327–340

    CAS  PubMed  Google Scholar 

  • Jämbeck JPM, Lyubartsev AP (2012) Derivation and systematic validation of a refined all-atom force field for Phosphatidylcholine lipids. J Phys Chem B 116:3164–3179

    PubMed  PubMed Central  Google Scholar 

  • Jayasuriya H, Koonchanok NM, Geahlen RL, McLaughlin L, Chang CJ (1992) Emodin, a protein tyrosine kinase inhibitor from Polygonum Cuspidatum. J Nat Prod 55:696–698

    CAS  PubMed  Google Scholar 

  • Jendrossek V, Handrick R (2003) Membrane targeted anticancer drugs: potent inducers of apoptosis and putative Radiosensitisers. Curr Med Chem Anticancer Agents 3:343–353

    CAS  PubMed  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    CAS  Google Scholar 

  • Kawai K, Kato T, Mori H, Kitamura J, Nozawa Y (1984) A comparative study on cytotoxicities and biochemical properties ofanthraquinone mycotoxinsemodin and skyrin from Penicillium islandicum. Toxicol Lett 20:155–160

    CAS  PubMed  Google Scholar 

  • Koenig BW, Strey HH, Gawrisch K (1997) Membrane lateral compressibility determined by NMR and x-ray diffraction: effect of acyl chain polyunsaturation. Biophys J 73:1954–1966

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koukoulitsa C, Durdagi S, Siapi E, Villalonga-Barber C, Alexi X, Steele BR, Micha-Screttas M, Alexis MN (2011) Comparison of thermal effects of stilbenoid analogs in lipid bilayers using differential scanning calorimetry and molecular dynamics: correlation of thermal effects and topographical position with antioxidant activity. Eur Biophys J 40:865–875

    CAS  PubMed  Google Scholar 

  • Koyama M, Kelly TR, Watanabe KA (1988) Novel type of potential anticancer agents derived from chrysophanol and emodin. Some structure-activity relationship studies. J Med Chem 31:283–284

    CAS  PubMed  Google Scholar 

  • Kumar A, Dhawan S, Aggarwal BB (1998) Emodin (3-methyl-1,6,8-trihydroxyanthraquinone) inhibits TNF-induced NF-B activation, IB degradation, and expression of cell surface adhesion proteins in human vascular endothelial cells. Oncogene 17:913–918

    CAS  PubMed  Google Scholar 

  • Kuo YC, Meng HC, Tsai WJ (2001) Regulation of cell proliferation, inflammatory cytokine production and calcium mobilization in primary human T lymphocytes by emodin from Polygonum Hypoleucum Ohwi. Inflamm Res 50:073–082

    CAS  Google Scholar 

  • Lis LJ, McAlister M, Fuller N, Rand RP, Parsegian VA (1982) Interactions between neutral phospholipid bilayer membranes. Biophys J 37:657–665

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez CF, Nielsen SO, Klein ML, Moore PB (2004) Hydrogen bonding structure and dynamics of water at the Dimyristoylphosphatidylcholine lipid Bilayer surface from a molecular dynamics simulation. J Phys Chem B 108:6603–6610

    CAS  Google Scholar 

  • Loverde SM (2014) Molecular simulation of the transport of drugs across model membranes. J Phys Chem Lett 5:1659–1665

    CAS  PubMed  Google Scholar 

  • Lucio M, Nunes C, Gaspar D, Ferreira H, Lima JLFC, Reis S (2009) Antioxidant activity of vitamin E and Trolox: understanding of the factors that govern lipid peroxidation studies in vitro. Food Biophys 4:312–320

    Google Scholar 

  • MacCallum JL, Tieleman DP (2006) Computer simulation of the distribution of hexane in a lipid Bilayer: spatially resolved free energy, entropy, and enthalpy profiles. J Am Chem Soc 128:125–130

    CAS  PubMed  Google Scholar 

  • Malde AK, Zuo L, Breeze M, Stroet M, Poger D, Nair PC, Oostenbrink C, Mark AE (2011) An automated force field topology builder (ATB) and repository: version 1.0. J Chem Theory Comput 7:4026–4037

    CAS  PubMed  Google Scholar 

  • Marković ZS, Manojlović NT (2009) DFT study on the reactivity of OH groups in emodin: structural and electronic features of emodin radicals. Monatsh Chem 140:1311–1318

    Google Scholar 

  • Marsh D (1990) CRC handbook of lipid Bilayers. CRC, Boca Raton

    Google Scholar 

  • Miertus S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129

    CAS  Google Scholar 

  • Miyamoto S, Kollman PA (1992) An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem 13:952–962

    CAS  Google Scholar 

  • Moore PB, Lopez CF, Klein ML (2001) Dynamical properties of a hydrated lipid Bilayer from a multinanosecond molecular dynamics simulation. Biophys J 81:2484–2494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta 1469:159–195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen SC, Hansen BKV, Hoffmann SV, Spanget-Larsen J (2008) Electronic states of emodin and its conjugate base. Synchrotron linear dichroism spectroscopy and quantum chemical calculations. Chem Phys 352:67–174

    Google Scholar 

  • Nitschke WK, Suplicy CCV, Coutinho K, Stassen H (2012) Molecular dynamics investigations of PRODAN in a DLPC Bilayer. J Phys Chem B 116:2713–2721

    CAS  PubMed  Google Scholar 

  • Nunes C, Brezesinski G, Lopes D, Lima JLFC, Reis S, Lúcio M (2011) Lipid–drug interaction: biophysical effects of Tolmetin on membrane mimetic Systems of Different Dimensionality. J Phys Chem B 115:12615–12623

    CAS  PubMed  Google Scholar 

  • Omote H, Al-Shawi MK (2006) Interaction of transported drugs with the lipid Bilayer and P-glycoprotein through a Solvation exchange mechanism. Biophys J 90:4046–4059

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orsi M, Essex JW (2010) Permeability of drugs and hormones through a lipid bilayer: insights from dual-resolution molecular dynamics. Soft Matter 6:3797–3808

    CAS  Google Scholar 

  • Pal T, Jana NR (1993) Emodin (1,3,8-trihydroxy-6-methylanthraquinone): a spectrophotometric reagent for the determination of beryllium(II), magnesium(II) and calcium(II). Analyst 118:1337–1342

    CAS  Google Scholar 

  • Parr RG, Yang W (1994) Density functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  • Peetla C, Stine A, Labhasetwar V (2009) Biophysical interactions with model lipid membranes: applications in drug discovery and drug delivery. Mol Pharm 6:1264–1276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira CS, Lins RD, Chandrasekhar I, Freitas LCG, Hünenberger PH (2004) Interaction of the disaccharide Trehalose with a Phospholipid Bilayer: a molecular dynamics study. Biophys J 86:2273–2285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petrache HI, Dodd SW, Brown MF (2000) Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by (2)H NMR spectroscopy. Biophys J 79:3172–3192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petrache HI, Tristram-Nagle S, Nagle JF (1998) Fluid phase structure of EPC and DMPC bilayers. Chem Phys Lipid 95:83–94

    CAS  Google Scholar 

  • Poger D, Mark AE (2010) On the validation of molecular dynamics simulations of saturated and cis-monounsaturated Phosphatidylcholine lipid Bilayers: a comparison with experiment. J Chem Theory Comput 6:325–336

    CAS  PubMed  Google Scholar 

  • Poger D, Mark AE (2012) Lipid Bilayers: the effect of force field on ordering and dynamics. J Chem Theory Comput 8:4807–4817

    CAS  PubMed  Google Scholar 

  • Poger D, Mark AE (2013) The relative effect of sterols and Hopanoids on lipid Bilayers: when comparable is not identical. J Phys Chem B 117:16129–16140

    CAS  PubMed  Google Scholar 

  • Poger D, van Gunsteren WF, Mark AE (2010) A new force field for simulating phosphatidylcholine bilayers. J Comput Chem 31:1117–1125

    CAS  PubMed  Google Scholar 

  • Rajarathnam K, Rösgen J (2014) Isothermal titration calorimetry of membrane proteins - progress and challenges. Biochim Biophys Acta 1838:69–77

    CAS  PubMed  Google Scholar 

  • Rand RP, Parsegian VA (1989) Hydration forces between phospholipid bilayers. Biochim Biophys Acta 988:351–376

    CAS  Google Scholar 

  • Rissanen S, Kumorek M, Martinez-Seara H, Li YC, Jamroz D, Bunker A, Nowakowska M, Vattulainen I, Kepczynski M, Roǵ T (2014) Effect of PEGylation on drug entry into lipid Bilayer. J Phys Chem B 118:144–151

    CAS  PubMed  Google Scholar 

  • Robinson AJ, Richards WG, Thomas PJ, Hann MM (1995) Behavior of cholesterol and its effect on headgroup and chain conformations in lipid bilayers: a molecular dynamics study. Biophys J 68:164–170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sabín J, Prieto G, Ruso JM, Messina PV, Salgado FJ, Nogueira M, Costas M, Sarmiento F (2009) Interactions between DMPC Liposomes and the serum blood proteins HSA and IgG. J Phys Chem B 113:1655–1661

    PubMed  Google Scholar 

  • Sachs JN, Petrache HI, Woolf TB (2003) Interpretation of small angle X-ray measurements guided by molecular dynamics simulations of lipid bilayers. Chem Phys Lipid 126:211–223

    CAS  Google Scholar 

  • Saito ST, Silva G, Pungartnik C, Brendel MJ (2012) Study of DNA–emodin interaction by FTIR and UV–Vis spectroscopy. Photochem Photobiol B 111:59–63

    CAS  Google Scholar 

  • Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE, van Gunsteren WF (2011) Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J 40:843–856

    CAS  PubMed  Google Scholar 

  • Seddon AM, Casey D, Law RV, Gee A, Templera RH, Cesab O (2009) Drug interactions with lipid membranes. Chem Soc Rev 38:2509–2519

    CAS  PubMed  Google Scholar 

  • Sevilla P, Blanco FG, Ramos JVG, Cortés SS (2009) Aggregation of antitumoral drug emodin on Ag nanoparticles: SEF, SERS and fluorescence lifetime experiments. Phys Chem Chem Phys 11:8342–8348

    CAS  PubMed  Google Scholar 

  • Sevilla P, De-Llanos R, Domingo C, Sanchez-Cortes S, Garcia-Ramos JV (2010) SERS plus MEF of the anti tumoral drug emodin adsorbed on silver nanoparticles. In: VoDinh T, Lakowicz JR (eds) Plasmonics in biology and medicine. Proceedings of SPIE, Volume 7577, 25 - 28 January, 2010, Bellingham, USA

  • Seydel JK, Wiese M (2002) Drug-membrane interactions: analysis, drug distribution, modeling, vol 15. , Weinheim

  • Sirk TW, Brown EF, Friedman M, Sum AK (2009) Molecular binding of Catechins to biomembranes: relationship to biological activity. J Agric Food Chem 57:6720–6728

    CAS  PubMed  Google Scholar 

  • Sirka KK (2014) Separation of molecules, macromolecules and particles: principles, phenomena and processes. Cambridge University Press, New York

    Google Scholar 

  • Smaby JM, Momsen MM, Brockman HL, Brown RE (1997) Phosphatidylcholine acyl unsaturation modulates the decrease in interfacial elasticity induced by cholesterol. Biophys J 73:1492–1505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smondyrev AM, Berkowitz ML (1999) Structure of Dipalmitoylphosphatidylcholine/cholesterol Bilayer at Lowand high cholesterol concentrations: molecular dynamics simulation. Biophys J 77:2075–2089

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smondyrev AM, Berkowitz ML (2001) Molecular dynamics simulation of the structure of Dimyristoylphosphatidylcholine Bilayers with cholesterol, Ergosterol, and Lanosterol. Biophys J 80:1649–1658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spoel DVD, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Google Scholar 

  • Srinivas G, Anto RJ, Srinivas P, Vidhyalakshmi S, Senan VP, Karunagaran D (2003) Emodin induces apoptosis of human cervical cancer cells through poly(ADP-ribose) polymerase cleavage and activation of caspase-9. Eur J Pharmacol 473:117–125

    CAS  PubMed  Google Scholar 

  • Thomson RH (1987) Naturally occurring Quinones, vol 3. Chapman and Hall, London

    Google Scholar 

  • Tieleman DP, Marrink SJ, Berendsen HJC (1997) A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim Biophys Acta 1331:235–270

    CAS  PubMed  Google Scholar 

  • To LV (1984) Emodin - a fungal metabolite - and the effects of Emodin on the growth of some soil microorganisms. Acta Agrar Silv Ser Agrar 23:235–242

    Google Scholar 

  • Vargas F, Rivas C, Medrano M (2004) Interaction of Emodin, aloe-Emodin, and Rhein with human serum albumin: a fluorescence spectroscopic study. Toxicol Mech Methods 14:227–231

    CAS  PubMed  Google Scholar 

  • Vermeer LS, de Groot BL, Réat V, Milon A, Czaplicki J (2007) Acyl chain order parameter profiles in phospholipid bilayers: computation from molecular dynamics simulations and comparison with 2H NMR experiments. Eur Biophys J 36:919–931

    CAS  PubMed  Google Scholar 

  • Wang L, Lin L, Ye BJ (2006) Electrochemical studies of the interaction of the anticancer herbal drug emodin with DNA. Pharm Biomed Anal 42:625–629

    Google Scholar 

  • Wang WH, Chung JG (1997) Emodin-induced inhibition of growth and DNA damage in the helicobacter pylori. Curr Microbiol 35:262–266

    CAS  PubMed  Google Scholar 

  • Witzke S, Duelund L, Kongsted J, Petersen M, Mouritsen OG, Khandelia H (2010) Inclusion of Terpenoid plant extracts in lipid Bilayers investigated by molecular dynamics simulations. J Phys Chem B 114:15825–15831

    CAS  PubMed  Google Scholar 

  • Xiang TX, Anderson BD (2006) Liposomal drug transport: a molecular perspective from molecular dynamics simulations in lipid bilayers. Adv Drug Deliv Rev 58:1357–1378

    CAS  PubMed  Google Scholar 

  • Yamamoto E, Akimoto T, Shimizu H, Hirano Y, Yasui M, Yasuoka K (2012) Diffusive nature of xenon anesthetic changes properties of a lipid Bilayer: molecular dynamics simulations. J Phys Chem B 116:8989–8995

    CAS  PubMed  Google Scholar 

  • Zhang L, Hung MC (1996) Sensitization of HER-2/neu-overexpressing non-small cell lung cancer cells to chemotherapeutic drugs by tyrosine kinase inhibitor emodin. Oncogene 12:571–576

    CAS  PubMed  Google Scholar 

  • Zhou XM, Chen QH (1988) Biochemical study of Chinese rhubarb. XXII. Inhibitory effect of anthraquinone derivatives on Na+−K+−ATPase of the rabbit renal medulla and their diuretic action. Yao Xue Xue Bao 23:17–20

    CAS  PubMed  Google Scholar 

  • Zubrzycki IZ, Xu Y, Madrid M, Tang P (2000) Molecular dynamics simulations of a fully hydrated dimyristoylphosphatidylcholine membrane in liquid-crystalline phase. J Chem Phys 112:3437–3441

    CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by CNPq, CAPES, FAPESP, INCT-FCx, NAP-FCx(USP) and BioMol (Brazil). Additionally, ARC acknowledges the fellowship from CNPq/CAPES, and HS, MTL and KC research fellowships from CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaline Coutinho.

Ethics declarations

Conflict of interest

Antonio R. da Cunha declares that he has no conflicts of interest. Evandro L. Duarte declares that he has no conflicts of interest. Hubert Stassen declares that he has no conflicts of interest. M. Teresa Lamy declares that she has no conflicts of interest. Kaline Coutinho declares that she has no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

This article is part of a Special Issue on ‘Latin America’ edited by Pietro Ciancaglini and Rosangela Itri.

Electronic supplementary material

ESM 1

(DOCX 2370 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Cunha, A.R., Duarte, E.L., Stassen, H. et al. Experimental and theoretical studies of emodin interacting with a lipid bilayer of DMPC. Biophys Rev 9, 729–745 (2017). https://doi.org/10.1007/s12551-017-0323-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-017-0323-1

Keywords

Navigation