Biophysical Reviews

, Volume 9, Issue 6, pp 919–929 | Cite as

Transverse tubule remodelling: a cellular pathology driven by both sides of the plasmalemma?

  • David J. CrossmanEmail author
  • Isuru D. Jayasinghe
  • Christian Soeller


Transverse (t)-tubules are invaginations of the plasma membrane that form a complex network of ducts, 200–400 nm in diameter depending on the animal species, that penetrates deep within the cardiac myocyte, where they facilitate a fast and synchronous contraction across the entire cell volume. There is now a large body of evidence in animal models and humans demonstrating that pathological distortion of the t-tubule structure has a causative role in the loss of myocyte contractility that underpins many forms of heart failure. Investigations into the molecular mechanisms of pathological t-tubule remodelling to date have focused on proteins residing in the intracellular aspect of t-tubule membrane that form linkages between the membrane and myocyte cytoskeleton. In this review, we shed light on the mechanisms of t-tubule remodelling which are not limited to the intracellular side. Our recent data have demonstrated that collagen is an integral part of the t-tubule network and that it increases within the tubules in heart failure, suggesting that a fibrotic mechanism could drive cardiac junctional remodelling. We examine the evidence that the linkages between the extracellular matrix, t-tubule membrane and cellular cytoskeleton should be considered as a whole when investigating the mechanisms of t-tubule pathology in the failing heart.


Transverse tubules Excitation–contraction coupling Heart failure Extracellular matrix Collagen 



We thank Auckland City Hospital and St. Vincent’s Hospital staff for assistance in obtaining tissue, and transplant recipients and donor families for donating tissue. Research funding was provided by the Auckland Medical Research Foundation (grant nos. 111009 and 1115014), Health Research Council of New Zealand (grant no. 12/240), Royal Society United Kingdom (grant no. RG.IMSB.107729) and Wellcome Trust (grant no. RG.IMSB.104532.054).

Compliance with ethical standards

Conflict of interest

David J. Crossman declares that he has no conflict of interest. Isuru D. Jayasinghe declares that he has no conflict of interest. Christian Soeller declares that he has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.


  1. Allamand V, Briñas L, Richard P et al (2011) ColVI myopathies: where do we stand, where do we go? Skelet Muscle 1:30. doi: 10.1186/2044-5040-1-30 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Baddeley D, Jayasinghe ID, Cremer C et al (2009) Light-induced dark states of organic fluochromes enable 30 nm resolution imaging in standard media. Biophys J 96:L22–L24. doi: 10.1016/j.bpj.2008.11.002 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baddeley D, Crossman D, Rossberger S et al (2011) 4D super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues. PLoS One 6:e20645CrossRefGoogle Scholar
  4. Balijepalli RC, Lokuta AJ, Maertz NA et al (2003) Depletion of T-tubules and specific subcellular changes in sarcolemmal proteins in tachycardia-induced heart failure. Cardiovasc Res 59:67–77CrossRefGoogle Scholar
  5. Bers DM (2002) Cardiac excitation–contraction coupling. Nature 415:198–205. doi: 10.1038/415198a CrossRefPubMedGoogle Scholar
  6. Beuckelmann DJ, Näbauer M, Erdmann E (1992) Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation 85:1046–1055CrossRefGoogle Scholar
  7. Bishop JE, Lindahl G (1999) Regulation of cardiovascular collagen synthesis by mechanical load. Cardiovasc Res 42:27–44. doi: 10.1016/S0008-6363(99)00021-8 CrossRefPubMedGoogle Scholar
  8. Brandenburg S, Kohl T, Williams GSB et al (2016) Axial tubule junctions control rapid calcium signaling in atria. J Clin Invest 126:3999–4015. doi: 10.1172/JCI88241 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Brette F, Orchard C (2007) Resurgence of cardiac T-tubule research. Physiology 22:167–173CrossRefGoogle Scholar
  10. Brette F, Komukai K, Orchard CH (2002) Validation of formamide as a detubulation agent in isolated rat cardiac cells. Am J Physiol Heart Circ Physiol 283:H1720–H1728CrossRefGoogle Scholar
  11. Brette F, Sallé L, Orchard CH (2006) Quantification of calcium entry at the T-tubules and surface membrane in rat ventricular myocytes. Biophys J 90:381–389CrossRefGoogle Scholar
  12. Caldwell JL, Smith CE, Taylor RF et al (2014) Dependence of cardiac transverse tubules on the BAR domain protein amphiphysin II (BIN-1). Circ Res 115:986–996. doi: 10.1161/CIRCRESAHA.116.303448 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Campbell KP, Kahl SD (1989) Association of dystrophin and an integral membrane glycoprotein. Nature 338:259–262. doi: 10.1038/338259a0 CrossRefPubMedGoogle Scholar
  14. Cannell MB, Soeller C (1997) Numerical analysis of ryanodine receptor activation by L-type channel activity in the cardiac muscle diad. Biophys J 73:112–122CrossRefGoogle Scholar
  15. Cannell MB, Crossman DJ, Soeller C (2006) Effect of changes in action potential spike configuration, junctional sarcoplasmic reticulum micro-architecture and altered t-tubule structure in human heart failure. J Muscle Res Cell Motil 27:297–306CrossRefGoogle Scholar
  16. Carver W, Nagpal ML, Nachtigal M et al (1991) Collagen expression in mechanically stimulated cardiac fibroblasts. Circ Res 69:116–122. doi: 10.1161/01.RES.69.1.116 CrossRefPubMedGoogle Scholar
  17. Chen B, Li Y, Jiang S et al (2012) β-adrenergic receptor antagonists ameliorate myocyte T-tubule remodeling following myocardial infarction. FASEB J 26:2531–2537. doi: 10.1096/fj.11-199505 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cheng H, Lederer WJ, Cannell MB (1993) Calcium Sparks: elementary events underlying excitation–contraction coupling in heart muscle. Science 262(5134):740–744. doi: 10.1126/science.8235594 CrossRefPubMedGoogle Scholar
  19. Cheng Y-J, Lang D, Caruthers SD et al (2012) Focal but reversible diastolic sheet dysfunction reflects regional calcium mishandling in dystrophic mdx mouse hearts. Am J Physiol Heart Circ Physiol 303:H559–H568. doi: 10.1152/ajpheart.00321.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cordeiro JM, Spitzer KW, Giles WR et al (2001) Location of the initiation site of calcium transients and sparks in rabbit heart Purkinje cells. J Physiol 531:301–314CrossRefGoogle Scholar
  21. Crocini C, Coppini R, Ferrantini C et al (2014) Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure. Proc Natl Acad Sci U S A 111:15196–15201. doi: 10.1073/pnas.1411557111 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Crossman DJ, Ruygrok PR, Soeller C et al (2011) Changes in the organization of excitation–contraction coupling structures in failing human heart. PLoS One 6:e17901CrossRefGoogle Scholar
  23. Crossman DJ, Young AA, Ruygrok PN et al (2015) T-tubule disease: relationship between T-tubule organization and regional contractile performance in human dilated cardiomyopathy. J Mol Cell Cardiol 84:170–178. doi: 10.1016/j.yjmcc.2015.04.022 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Crossman DJ, Shen X, Jüllig M et al (2017) Increased collagen within the transverse tubules in human heart failure. Cardiovasc ResGoogle Scholar
  25. Emde B, Heinen A, Gödecke A et al (2014) Wheat germ agglutinin staining as a suitable method for detection and quantification of fibrosis in cardiac tissue after myocardial infarction. Eur J Histochem 58:315–319. doi: 10.4081/ejh.2014.2448 CrossRefGoogle Scholar
  26. Ervasti JM (2003) Costameres: the Achilles’ heel of Herculean muscle. J Biol Chem 278:13591–13594. doi: 10.1074/jbc.R200021200 CrossRefPubMedGoogle Scholar
  27. Forbes MS, Sperelakis N (1982) Bridging junctional processes in couplings of skeletal, cardiac, and smooth muscle. Muscle Nerve 5:674–681. doi: 10.1002/mus.880050903 CrossRefGoogle Scholar
  28. Frisk M, Ruud M, Espe EKS et al (2016) Elevated ventricular wall stress disrupts cardiomyocyte t-tubule structure and calcium homeostasis. Cardiovasc Res 1–28. doi:  10.1093/cvr/cvw111 CrossRefGoogle Scholar
  29. Galbiati F, Engelman JA, Volonte D et al (2001) Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin–glycoprotein complex, and T-tubule abnormalities. J Biol Chem 276:21425–21433. doi: 10.1074/jbc.M100828200 CrossRefPubMedGoogle Scholar
  30. Glukhov AV, Balycheva M, Sanchez-Alonso JL et al (2015) Direct evidence for microdomain-specific localization and remodeling of functional L-type calcium channels in rat and human atrial myocytes. Circulation 132:2372–2384. doi: 10.1161/CIRCULATIONAHA.115.018131 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Gomez AM, Valdivia HH, Cheng H et al (1997) Defective excitation–contraction coupling in experimental cardiac hypertrophy and heart failure. Science 276(5313):800–806. doi: 10.1126/science.276.5313.800 CrossRefPubMedGoogle Scholar
  32. Guo A, Zhang C, Wei S et al (2013) Emerging mechanisms of T-tubule remodeling in heart failure. Cardiovasc Res 98:204–215. doi: 10.1093/cvr/cvt020 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Guo A, Zhang X, Iyer VR et al (2014) Overexpression of junctophilin-2 does not enhance baseline function but attenuates heart failure development after cardiac stress. Proc Natl Acad Sci U S A 111:12240–12245. doi: 10.1073/pnas.1412729111 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Heilemann M, van de Linde S, Schüttpelz M et al (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl 47:6172–6176. doi: 10.1002/anie.200802376 CrossRefPubMedGoogle Scholar
  35. Heinzel FR, Bito V, Biesmans L et al (2008) Remodeling of T-tubules and reduced synchrony of Ca2+ release in myocytes from chronically ischemic myocardium. Circ Res 102:338–346. doi: 10.1161/CIRCRESAHA.107.160085 CrossRefGoogle Scholar
  36. Hong T-T, Smyth JW, Gao D et al (2010) BIN1 localizes the L-type calcium channel to cardiac T-tubules. PLoS Biol 8:e1000312CrossRefGoogle Scholar
  37. Hong TT, Smyth JW, Chu KY et al (2012) BIN1 is reduced and Cav1.2 trafficking is impaired in human failing cardiomyocytes. Heart Rhythm 9:812–820. doi: 10.1016/j.hrthm.2011.11.055 CrossRefPubMedGoogle Scholar
  38. Hong T, Yang H, Zhang S-S et al (2014) Cardiac BIN1 folds T-tubule membrane, controlling ion flux and limiting arrhythmia. Nat Med 20:624–632. doi: 10.1038/nm.3543 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Huang C-K, Chen B-Y, Guo A et al (2016) Sildenafil ameliorates left ventricular T-tubule remodeling in a pressure overload-induced murine heart failure model. Acta Pharmacol Sin 37:473–482. doi: 10.1038/aps.2016.13 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Huff J (2015) The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution. Nat Methods 12:i–ii. doi: 10.1038/nmeth.f.388 CrossRefGoogle Scholar
  41. Humphrey JD, Dufresne ER, Schwartz MA (2014) Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol 15:802–812. doi: 10.1038/nrm3896 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Ibrahim M, Terracciano CM (2013) Reversibility of T-tubule remodelling in heart failure: mechanical load as a dynamic regulator of the T-tubules. Cardiovasc Res 98:225–232. doi: 10.1093/cvr/cvt016 CrossRefPubMedGoogle Scholar
  43. Ibrahim M, Al Masri A, Navaratnarajah M et al (2010) Prolonged mechanical unloading affects cardiomyocyte excitation–contraction coupling, transverse-tubule structure, and the cell surface. FASEB J 24:3321–3329CrossRefGoogle Scholar
  44. Ibrahim M, Navaratnarajah M, Siedlecka U et al (2012) Mechanical unloading reverses transverse tubule remodelling and normalizes local Ca(2+)-induced Ca(2+) release in a rodent model of heart failure. Eur J Heart Fail 14:571–580. doi: 10.1093/eurjhf/hfs038 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ibrahim M, Siedlecka U, Buyandelger B et al (2013) A critical role for Telethonin in regulating t-tubule structure and function in the mammalian heart. Hum Mol Genet 22:372–383. doi: 10.1093/hmg/dds434 CrossRefPubMedGoogle Scholar
  46. Jayasinghe ID, Clowsley AH, Munro M et al (2015) Revealing t-tubules in striated muscle with new optical super-resolution microscopy techniques. Eur J Transl Myol 25:15–26. doi: 10.4081/ejtm.2015.4747 CrossRefGoogle Scholar
  47. Kaprielian RR, Stevenson S, Rothery SM et al (2000) Distinct patterns of dystrophin organization in myocyte sarcolemma and transverse tubules of normal and diseased human myocardium. Circulation 101:2586–2594. doi: 10.1161/01.CIR.101.22.2586 CrossRefPubMedGoogle Scholar
  48. Kawai M, Hussain M, Orchard CH (1999) Excitation–contraction coupling in rat ventricular myocytes after formamide-induced detubulation. Am J Physiol Heart Circ Physiol 277:H603–H609CrossRefGoogle Scholar
  49. Kohl T, Westphal V, Hell SW et al (2013) Superresolution microscopy in heart—cardiac nanoscopy. J Mol Cell Cardiol 58:13–21. doi: 10.1016/j.yjmcc.2012.11.016 CrossRefPubMedGoogle Scholar
  50. Kong CHT, Rog-Zielinska EA, Orchard CH et al (2017) Sub-microscopic analysis of t-tubule geometry in living cardiac ventricular myocytes using a shape-based analysis method. J Mol Cell Cardiol 108:1–7. doi: 10.1016/j.yjmcc.2017.05.003 CrossRefGoogle Scholar
  51. Kostin S, Scholz D, Shimada T et al (1998) The internal and external protein scaffold of the T-tubular system in cardiomyocytes. Cell Tissue Res 294:449–460. doi: 10.1007/s004410051196 CrossRefPubMedGoogle Scholar
  52. Laflamme MA, Becker PL (1999) Gs and adenylyl cyclase in transverse tubules of heart: implications for cAMP-dependent signaling. Am J Physiol Heart Circ Physiol 277:H1841–H1848CrossRefGoogle Scholar
  53. Landstrom AP, Weisleder N, Batalden KB et al (2007) Mutations in JPH2-encoded junctophilin-2 associated with hypertrophic cardiomyopathy in humans. J Mol Cell Cardiol 42:1026–1035. doi: 10.1016/j.yjmcc.2007.04.006 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Lapidos KA, Kakkar R, McNally EM (2004) The dystrophin glycoprotein complex: signaling strength and integrity for the sarcolemma. Circ Res 94:1023–1031. doi: 10.1161/01.RES.0000126574.61061.25 CrossRefPubMedGoogle Scholar
  55. Laver DR, Kong CHT, Imtiaz MS et al (2013) Termination of calcium-induced calcium release by induction decay: an emergent property of stochastic channel gating and molecular scale architecture. J Mol Cell Cardiol 54:98–100. doi: 10.1016/j.yjmcc.2012.10.009 CrossRefPubMedGoogle Scholar
  56. Li H, Lichter JG, Seidel T et al (2015) Cardiac resynchronization therapy reduces subcellular heterogeneity of ryanodine receptors, t-tubules, and Ca2+ sparks produced by dyssynchronous heart failure. Circ Heart Fail 8:1105–1114. doi: 10.1161/CIRCHEARTFAILURE.115.002352 Google Scholar
  57. Lindner M, Brandt MC, Sauer H et al (2002) Calcium sparks in human ventricular cardiomyocytes from patients with terminal heart failure. Cell Calcium 31:175–182CrossRefGoogle Scholar
  58. Louch WE, Bito V, Heinzel FR et al (2004) Reduced synchrony of Ca2+ release with loss of T-tubules—a comparison to Ca2+ release in human failing cardiomyocytes. Cardiovasc Res 62:63–73CrossRefGoogle Scholar
  59. Louch WE, Mørk HK, Sexton J et al (2006) T-tubule disorganization and reduced synchrony of Ca2+ release in murine cardiomyocytes following myocardial infarction. J Physiol 574:519–533. doi: 10.1113/jphysiol.2006.107227 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Luther DJ, Thodeti CK, Shamhart PE et al (2012) Absence of type VI collagen paradoxically improves cardiac function, structure, and remodeling after myocardial infarction. Circ Res 110:851–856. doi: 10.1161/CIRCRESAHA.111.252734 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Lyon AR, MacLeod KT, Zhang Y et al (2009) Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart. Proc Natl Acad Sci U S A 106:6854–6859CrossRefGoogle Scholar
  62. Lyon RC, Zanella F, Omens JH et al (2015) Mechanotransduction in cardiac hypertrophy and failure. Circ Res 116:1462–1476. doi: 10.1161/CIRCRESAHA.116.304937 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Maron BJ, Ferrans VJ, Roberts WC (1975) Ultrastructural features of degenerated cardiac muscle cells in patients with cardiac hypertrophy. Am J Pathol 79:387–434PubMedPubMedCentralGoogle Scholar
  64. McNary TG, Bridge JHB, Sachse FB (2011) Strain transfer in ventricular cardiomyocytes to their transverse tubular system revealed by scanning confocal microscopy. Biophys J 100:L53–L55. doi: 10.1016/j.bpj.2011.03.046 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Minetti C, Sotgia F, Bruno C et al (1998) Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy. Nat Genet 18:365–368. doi: 10.1038/ng0498-365 CrossRefPubMedGoogle Scholar
  66. Muller AJ, Baker JF, DuHadaway JB et al (2003) Targeted disruption of the murine Bin1/Amphiphysin II gene does not disable endocytosis but results in embryonic cardiomyopathy with aberrant myofibril formation. Mol Cell Biol 23:4295–4306. doi: 10.1128/MCB.23.12.4295-4306.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Nakayama S, Mukae H, Sakamoto N et al (2008) Pirfenidone inhibits the expression of HSP47 in TGF-β1-stimulated human lung fibroblasts. Life Sci 82:210–217. doi: 10.1016/j.lfs.2007.11.003 CrossRefPubMedGoogle Scholar
  68. Nguyen DT, Ding C, Wilson E et al (2010) Pirfenidone mitigates left ventricular fibrosis and dysfunction after myocardial infarction and reduces arrhythmias. Heart Rhythm 7:1438–1445. doi: 10.1016/j.hrthm.2010.04.030 CrossRefPubMedGoogle Scholar
  69. Ohler A, Weisser-Thomas J, Piacentino V et al (2009) Two-photon laser scanning microscopy of the transverse-axial tubule system in ventricular cardiomyocytes from failing and non-failing human hearts. Cardiol Res Pract 2009:802373. doi: 10.4061/2009/802373 CrossRefPubMedGoogle Scholar
  70. Peter AK, Cheng H, Ross RS et al (2011) The costamere bridges sarcomeres to the sarcolemma in striated muscle. Prog Pediatr Cardiol 31:83–88. doi: 10.1016/j.ppedcard.2011.02.003 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Pinali C, Bennett H, Davenport JB et al (2013) Three-dimensional reconstruction of cardiac sarcoplasmic reticulum reveals a continuous network linking transverse-tubules: this organization is perturbed in heart failure. Circ Res 113:1219–1230. doi: 10.1161/CIRCRESAHA.113.301348 CrossRefGoogle Scholar
  72. Prins KW, Humston JL, Mehta A et al (2009) Dystrophin is a microtubule-associated protein. J Cell Biol 186:363–369. doi: 10.1083/jcb.200905048 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Quick AP, Wang Q, Philippen LE et al (2016) Striated muscle preferentially expressed protein kinase (SPEG) is essential for cardiac function by regulating junctional membrane complex activity. Circ Res CIRCRESAHA.116.309977. doi:  10.1161/CIRCRESAHA.116.309977 CrossRefGoogle Scholar
  74. Rafii MS, Hagiwara H, Mercado ML et al (2006) Biglycan binds to α- and γ-sarcoglycan and regulates their expression during development. J Cell Physiol 209:439–447. doi: 10.1002/jcp.20740 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Renley BA, Rybakova IN, Amann KJ, Ervasti JM (1998) Dystrophin binding to nonmuscle actin. Cytoskeleton 41:264–270. doi: 10.1002/(SICI)1097-0169(1998)41:3<264::AID-CM7>3.0.CO;2-Z CrossRefGoogle Scholar
  76. Richards MA, Clarke JD, Saravanan P et al (2011) Transverse tubules are a common feature in large mammalian atrial myocytes including human. Am J Physiol Heart Circ Physiol 301:H1996–H2005CrossRefGoogle Scholar
  77. Ross RS, Borg TK (2001) Integrins and the myocardium. Circ Res 88:1112–1119. doi: 10.1161/hh1101.091862 CrossRefPubMedGoogle Scholar
  78. Sacconi L, Ferrantini C, Lotti J et al (2012) Action potential propagation in transverse-axial tubular system is impaired in heart failure. Proc Natl Acad Sci U S A 109:5815–5819. doi: 10.1073/pnas.1120188109 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Sachse FB, Torres NS, Savio-Galimberti E et al (2012) Subcellular structures and function of myocytes impaired during heart failure are restored by cardiac resynchronization therapy. Circ Res 110:588–597CrossRefGoogle Scholar
  80. Savio-Galimberti E, Frank J, Inoue M et al (2008) Novel features of the rabbit transverse tubular system revealed by quantitative analysis of three-dimensional reconstructions from confocal images. Biophys J 95:2053–2062CrossRefGoogle Scholar
  81. Schaper J, Froede R, Hein ST et al (1991) Impairment of the myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy. Circulation 83:504–514CrossRefGoogle Scholar
  82. Segura AM, Frazier OH, Buja LM (2014) Fibrosis and heart failure. Heart Fail Rev 19:173–185. doi: 10.1007/s10741-012-9365-4 CrossRefGoogle Scholar
  83. Sher AA, Noble PJ, Hinch R et al (2008) The role of the Na+/Ca2+ exchangers in Ca2+ dynamics in ventricular myocytes. Prog Biophys Mol Biol 96:377–398. doi: 10.1016/j.pbiomolbio.2007.07.018 CrossRefPubMedGoogle Scholar
  84. Sipilä L, Ruotsalainen H, Sormunen R et al (2007) Secretion and assembly of type IV and VI collagens depend on glycosylation of hydroxylysines. J Biol Chem 282:33381–33388. doi: 10.1074/jbc.M704198200 CrossRefPubMedGoogle Scholar
  85. Söderström KO (1987) Lectin binding to collagen strands in histologic tissue sections. Histochem Cell Biol 87:557–560Google Scholar
  86. Soeller C, Baddeley D (2013) Super-resolution imaging of EC coupling protein distribution in the heart. J Mol Cell Cardiol 58:32–40. doi: 10.1016/j.yjmcc.2012.11.004 CrossRefPubMedGoogle Scholar
  87. Soeller C, Cannell MB (1999) Examination of the transverse tubular system in living cardiac rat myocytes by 2-photon microscopy and digital image-processing techniques. Circ Res 84:266–275CrossRefGoogle Scholar
  88. Soeller C, Cannell MB (2004) Analysing cardiac excitation–contraction coupling with mathematical models of local control. Prog Biophys Mol Biol 85:141–162. doi: 10.1016/j.pbiomolbio.2003.12.006 CrossRefPubMedGoogle Scholar
  89. Song L-S, Sobie EA, McCulle S et al (2006) Orphaned ryanodine receptors in the failing heart. Proc Natl Acad Sci U S A 103:4305–4310. doi: 10.1073/pnas.0509324103 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Stegemann M, Meyer R, Haas HG et al (1990) The cell surface of isolated cardiac myocytes—a light microscope study with use of fluorochrome-coupled lectins. J Mol Cell Cardiol 22:787–803CrossRefGoogle Scholar
  91. Stern MD (1992) Theory of excitation–contraction coupling in cardiac muscle. Biophys J 63:497–517. doi: 10.1016/S0006-3495(92)81615-6 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Takeshima H, Komazaki S, Nishi M et al (2000) Junctophilins: a novel family of junctional membrane complex proteins. Mol Cell 6:11–22PubMedGoogle Scholar
  93. Tulla M, Pentikäinen OT, Viitasalo T et al (2001) Selective binding of collagen subtypes by integrin alpha1I, alpha2I, and alpha10I domains. J Biol Chem 276:48206–48212. doi: 10.1074/jbc.M104058200 CrossRefPubMedGoogle Scholar
  94. van Oort RJ, Garbino A, Wang W et al (2011) Disrupted junctional membrane complexes and hyperactive ryanodine receptors after acute junctophilin knockdown in mice. Circulation 123:979–988. doi: 10.1161/CIRCULATIONAHA.110.006437 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Vatta M, Stetson SJ, Perez-Verdia A et al (2002) Molecular remodelling of dystrophin in patients with end-stage cardiomyopathies and reversal in patients on assistance-device therapy. Lancet 359:936–941. doi: 10.1016/S0140-6736(02)08026-1 CrossRefPubMedGoogle Scholar
  96. Verhaert D, Richards K, Rafael-Fortney JA et al (2011) Cardiac involvement in patients with muscular dystrophies: magnetic resonance imaging phenotype and genotypic considerations. Circ Cardiovasc Imaging 4:67–76. doi: 10.1161/CIRCIMAGING.110.960740 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Viola HM, Adams AM, Davies SMK et al (2014) Impaired functional communication between the L-type calcium channel and mitochondria contributes to metabolic inhibition in the mdx heart. Proc Natl Acad Sci U S A 111:E2905–E2914. doi: 10.1073/pnas.1402544111 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Wagner E, Lauterbach MA, Kohl T et al (2012) Stimulated emission depletion live-cell super-resolution imaging shows proliferative remodeling of T-tubule membrane structures after myocardial infarction. Circ Res 111:402–414. doi: 10.1161/CIRCRESAHA.112.274530 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Walker MA, Williams GSB, Kohl T et al (2014) Superresolution modeling of calcium release in the heart. Biophys J 107:3018–3029. doi: 10.1016/j.bpj.2014.11.003 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Walker MA, Kohl T, Lehnart SE et al (2015) On the adjacency matrix of RyR2 cluster structures. PLoS Comput Biol 11:1–21. doi: 10.1371/journal.pcbi.1004521 CrossRefGoogle Scholar
  101. Wei S, Chow LTC, Sanderson JE (2000) Effect of carvedilol in comparison with metoprolol on myocardial collagen postinfarction. J Am Coll Cardiol 36:276–281. doi: 10.1016/S0735-1097(00)00671-9 CrossRefPubMedGoogle Scholar
  102. Wei S, Guo A, Chen B et al (2010) T-tubule remodeling during transition from hypertrophy to heart failure. Circ Res 107:520–531. doi: 10.1161/CIRCRESAHA.109.212324 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Wiberg C, Hedbom E, Khairullina A et al (2001) Biglycan and decorin bind close to the n-terminal region of the collagen VI triple helix. J Biol Chem 276:18947–18952. doi: 10.1074/jbc.M100625200 CrossRefPubMedGoogle Scholar
  104. Wiberg C, Heinegård D, Wenglén C et al (2002) Biglycan organizes collagen VI into hexagonal-like networks resembling tissue structures. J Biol Chem 277:49120–49126. doi: 10.1074/jbc.M206891200 CrossRefPubMedGoogle Scholar
  105. Wright CS (1984) Structural comparison of the two distinct sugar binding sites in wheat germ agglutinin isolectin II. J Mol Biol 178:91–104. doi: 10.1016/0022-2836(84)90232-8 CrossRefPubMedGoogle Scholar
  106. Wu C-YC, Jia Z, Wang W et al (2011) PI3Ks maintain the structural integrity of T-tubules in cardiac myocytes. PLoS One 6:e24404CrossRefGoogle Scholar
  107. Wu C-YC, Chen B, Jiang Y-P et al (2014) Calpain-dependent cleavage of junctophilin-2 and T-tubule remodeling in a mouse model of reversible heart failure. J Am Heart Assoc 3:e000527. doi: 10.1161/JAHA.113.000527 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Young AA, Dokos S, Powell KA et al (2001) Regional heterogeneity of function in nonischemic dilated cardiomyopathy. Cardiovasc Res 49:308–318CrossRefGoogle Scholar
  109. Zhang H-B, Li R-C, Xu M et al (2013) Ultrastructural uncoupling between T-tubules and sarcoplasmic reticulum in human heart failure. Cardiovasc Res 98:269–276. doi: 10.1093/cvr/cvt030 CrossRefPubMedGoogle Scholar
  110. Zhang C, Chen B, Guo A et al (2014) Microtubule-mediated defects in junctophilin-2 trafficking contribute to myocyte T-tubule remodeling and Ca2+ handling dysfunction in heart failure. Circulation 129:1742–1750. doi: 10.1161/CIRCULATIONAHA.113.008452 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Ziegler WH, Gingras AR, Critchley DR et al (2008) Integrin connections to the cytoskeleton through talin and vinculin. Biochem Soc Trans 36:235–239. doi: 10.1042/BST0360235 CrossRefPubMedGoogle Scholar
  112. Zou Y, Zhang R-Z, Sabatelli P et al (2008) Muscle interstitial fibroblasts are the main source of collagen VI synthesis in skeletal muscle: implications for congenital muscular dystrophy types Ullrich and Bethlem. J Neuropathol Exp Neurol 67:144–154. doi: 10.1097/nen.0b013e3181634ef7 CrossRefPubMedGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • David J. Crossman
    • 1
    Email author
  • Isuru D. Jayasinghe
    • 2
  • Christian Soeller
    • 1
    • 3
  1. 1.Department of PhysiologyUniversity of AucklandAucklandNew Zealand
  2. 2.School of Biomedical SciencesUniversity of LeedsLeedsUK
  3. 3.Biomedical PhysicsUniversity of ExeterExeterUK

Personalised recommendations