Effect of ensiling duration on the fate of deoxynivalenol, zearalenone and their derivatives in maize silage

  • Tolke JensenEmail author
  • Marthe De Boevre
  • Sarah De Saeger
  • Nils Preußke
  • Frank D. Sönnichsen
  • Ewald Kramer
  • Holger Klink
  • Joseph-Alexander Verreet
  • Tim Birr
Original Article


Fusarium mycotoxins and their derivatives are frequently detected in freshly harvested forage maize. This study assessed the time course effects during ensiling of forage maize on the fate of Fusarium mycotoxins, using laboratory-scale silos and artificially contaminated raw material. A multi-mycotoxin liquid chromatography–high-resolution mass spectrometry (LC-HRMS) method was used to determine the levels of deoxynivalenol (DON), zearalenone (ZEN) and their derivatives DON-3-glucoside, 3-acetyl-DON, 15-acetyl-DON, deepoxy-DON, α-zearalenol and β-zearalenol. A significant increase of DON was observed during ensiling, whereas the levels of DON-3-glucoside and its acetylated forms proportionally decreased. In contrast, levels of ZEN, α-zearalenol and β-zearalenol were not affected by the ensiling process. Based on these findings, ensiling is not a practical method for reducing the total amount of Fusarium mycotoxins present at harvest.


Fusarium Mycotoxin Degradation Feed Modified mycotoxin HRMS 







Detection capability


Coefficient of variation


Dry matter








Fresh weight


Liquid chromatography–high-resolution mass spectrometry


Standard deviation











The authors would like to acknowledge the statistical support of Mario Hasler and the technical assistances of Nicole Lau, Linda Kettler, Daniel Weber and Friedrich Bornemann. Furthermore, they want to thank Markus Schemmel and Thomas Bergmann for proofreading and Siegfried Wolffram for providing the Savant SPD 2010 SpeedVacTM.

Funding information

This work was funded by the H. Wilhelm Schaumann Stiftung.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12550_2019_378_MOESM1_ESM.docx (18 kb)
ESM 1 (DOCX 17 kb)


  1. Berthiller F, Schuhmacher R, Adam G, Krska R (2009a) Formation, determination and significance of masked and other conjugated mycotoxins. Anal Bioanal Chem 395:1243–1252. CrossRefPubMedGoogle Scholar
  2. Berthiller F, Dall’Asta C, Corradini R, Marchelli R, Sulyok M, Krska R, Adam G, Schuhmacher R (2009b) Occurrence of deoxynivalenol and its 3-beta-D-glucoside in wheat and maize. Food Addit Contam Part A 26:507–511. CrossRefGoogle Scholar
  3. Berthiller F, Krska R, Domig KJ, Kneifel W, Juge N, Schuhmacher R, Adam G (2011) Hydrolytic fate of deoxynivalenol-3-glucoside during digestion. Toxicol Lett 206:264–267. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Boudra H, Morgavi DP (2008) Reduction in Fusarium toxin levels in corn silage with low dry matter and storage time. J Agric Food Chem 56:4523–4528. CrossRefPubMedGoogle Scholar
  5. Buxton DR, Muck RE, Harrison JH, Pahlow G, Driehuis F, Elferink SJWHO, Spoelstra SF (2003) Microbiology of ensiling. In: Silage science and technology, 42, p. 305-360. American Society of Agronomy, Crop Science Society of America, Soil Science Society of AmericaGoogle Scholar
  6. De Angelis E, Monaci L, Pascale M, Visconti A (2013) Fate of deoxynivalenol, T-2 and HT-2 toxins and their glucoside conjugates from flour to bread: an investigation by high-performance liquid chromatography high-resolution mass spectrometry. Food Addit Contam Part A 30:345–355. CrossRefGoogle Scholar
  7. De Boevre M, Di Mavungu JD, Maene P, Audenaert K, Deforce D, Haesaert G, Eeckhout M, Callebaut A, Berthiller F, van Peteghem C, De Saeger S (2012) Development and validation of an LC-MS/MS method for the simultaneous determination of deoxynivalenol, zearalenone, T-2-toxin and some masked metabolites in different cereals and cereal-derived food. Food Addit Contam Part A 29:819–835. CrossRefGoogle Scholar
  8. De Boevre M, Landschoot S, Audenaert K, Maene P, Di Mavungu D, Eeckhout M, Haesaert G, De Saeger S (2014) Occurrence and within field variability of Fusarium mycotoxins and their masked forms in maize crops in Belgium. World Mycotoxin J. 7:91–102. CrossRefGoogle Scholar
  9. Döll S, Dänicke S (2011) The Fusarium toxins deoxynivalenol (DON) and zearalenone (ZON) in animal feeding. Prev Vet Med 102:132–145. CrossRefPubMedGoogle Scholar
  10. Driehius F (2013) Silage and the safety and quality of dairy food: a review. Agric Food Sci Finl 22:16–34. CrossRefGoogle Scholar
  11. Driehuis F, Oude Elferink SJ (2000) The impact of the quality of silage on animal health and food safety: a review. Vet Q 22:212–216. CrossRefPubMedGoogle Scholar
  12. Eckard S, Wettstein FE, Forrer H-R, Vogelgsang S (2011) Incidence of Fusarium species and mycotoxins in silage maize. Toxins 3:949–967. CrossRefPubMedPubMedCentralGoogle Scholar
  13. EFSA (EFSA Panel on Contaminants in the Food Chain), Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Grasl-Kraupp B, Hogstrand C, Hoogenboom L, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot A-C, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, De Saeger S, Eriksen GS, Farmer P, Fremy J-M, Gong YY, Meyer K, Naegeli H, Parent-Massin D, Rietjens I, van Egmond H, Altieri A, Eskola M, Gergelova P, Ramos Bordajandi L, Benkova B, Dörr B, Gkrillas A, Gustavsson N, van Manen M, Edler L (2017) Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFS2 15:1–345. CrossRefGoogle Scholar
  14. European Commission (2006) Commission Recommendation (2006/576/EC) of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT- 2 and fumonisins in products intended for animal feeding. O J L229:7–9Google Scholar
  15. European Commission (2017) Guidance document on identification of mycotoxins in food and feed (SANTE/12089/2016), implemented by 01/01/2017. Accessed on 23 March 2019
  16. Garon D, Richard E, Sage L, Bouchart V, Pottier D, Lebailly P (2006) Mycoflora and multimycotoxin detection in corn silage: experimental study. J Agric Food Chem 54:3479–3484. CrossRefPubMedGoogle Scholar
  17. González Pereyra ML, Alonso VA, Sager R, Morlaco MB, Magnoli CE, Astoreca AL, Rosa CAR, Chiacchiera SM, Dalcero AM, Cavaglieri LR (2008) Fungi and selected mycotoxins from pre- and postfermented corn silage. J Appl Microbiol 104:1034–1041. CrossRefPubMedGoogle Scholar
  18. González Pereyra ML, Sulyok M, Baralla V, Dalcero AM, Krska R, Chulze S, Cavaglieri LR (2014) Evaluation of zearalenone, α-zearalenol, β-zearalenol, zearalenone 4-sulfate and β-zearalenol 4-glucoside levels during the ensiling process. World Mycotoxin J 7:291–295. CrossRefGoogle Scholar
  19. Häggblom P, Nordkvist E (2015) Deoxynivalenol, zearalenone, and Fusarium graminearum contamination of cereal straw; field distribution; and sampling of big bales. Mycotoxin Res 31:101–107. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Harris AM, Gardner WA, Getting RD (1996) A review of the scientific literature on fungus gnats (Diptera: Sciaridae) in the genus Bradysia. J Entomol Sci 31. CrossRefGoogle Scholar
  21. Islam R, Zhou T, Young JC, Goodwin PH, Pauls KP (2012) Aerobic and anaerobic de-epoxydation of mycotoxin deoxynivalenol by bacteria originating from agricultural soil. World J Microbiol Biotechnol 28:7–13. CrossRefPubMedGoogle Scholar
  22. Jensen T, De Boevre M, Preußke N, De Saeger S, Birr T, Verreet JA, Sönnichsen FD (2019) Evaluation of high-resolution mass spectrometry for the quantitative analysis of mycotoxins in complex feed matrices. Toxins 11:531. CrossRefPubMedCentralGoogle Scholar
  23. Keller LAM, González Pereyra ML, Keller KM, Alonso VA, Oliveira AA, Almeida TX, Barbosa TS, Nunes LMT, Cavaglieri LR, Rosa CAR (2013) Fungal and mycotoxins contamination in corn silage: monitoring risk before and after fermentation. J Stored Prod Res 52:42–47. CrossRefGoogle Scholar
  24. Keller L, Abrunhosa L, Keller K, Rosa CA, Cavaglieri L, Venâncio A (2015) Zearalenone and its derivatives α-zearalenol and β-zearalenol decontamination by Saccharomyces cerevisiae strains isolated from bovine forage. Toxins 7:3297–3308. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kung L, Shaver R (2001) Interpretation and use of silage fermentation analysis reports. Accessed on 4 April 2019
  26. Latorre A, Dagnac T, Lorenzo BF, Llompart M (2015) Occurrence and stability of masked fumonisins in corn silage samples. Food Chem 189:38–44. CrossRefPubMedGoogle Scholar
  27. Lepom P, Weise G (1989) Vorkommen von Fusarium-Arten und ihren Mykotoxinen auf Silomais. Arch Tierernahr 39:369–373. CrossRefGoogle Scholar
  28. Lepom P, Baath H, Knabe O (1988) Vorkommen von Fusarium-Arten und ihren Mykotoxinen auf Silomais. Arch Tierernahr 38:817–823. CrossRefPubMedGoogle Scholar
  29. Li Y, Nishino N (2011) Monitoring the bacterial community of maize silage stored in a bunker silo inoculated with Enterococcus faecium, Lactobacillus plantarum and Lactobacillus buchneri. J Appl Microbiol 110:1561–1570. CrossRefPubMedGoogle Scholar
  30. Lin C, Bolsen KK, Brent BE, Fung DYC (1992) Epiphytic lactic acid bacteria succession during the pre-ensiling and ensiling periods of alfalfa and maize. J Appl Bacteriol 73:375–387. CrossRefGoogle Scholar
  31. Malachová A, Štočková L, Wakker A, Varga E, Krska R, Michlmayr H, Adam G, Berthiller F (2015) Critical evaluation of indirect methods for the determination of deoxynivalenol and its conjugated forms in cereals. Anal Bioanal Chem 407:6009–6020. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Miedaner T, Schilling AG, Geiger HH (2001) Molecular genetic diversity and variation for aggressiveness in populations of Fusarium graminearum and Fusarium culmorum sampled from wheat fields in different countries. J Phytopathol 149:641–648. CrossRefGoogle Scholar
  33. Muck RE (2010) Silage microbiology and its control through additives. R Bras Zootec 39:183–191. CrossRefGoogle Scholar
  34. Nakagawa S, Schielzeth H, O’Hara RB (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142. CrossRefGoogle Scholar
  35. Nicolaisen M, Suproniene S, Nielsen LK, Lazzaro I, Spliid NH, Justesen AF (2009) Real-time PCR for quantification of eleven individual Fusarium species in cereals. J Microbiol Methods 76:234–240. CrossRefPubMedGoogle Scholar
  36. Niderkorn V, Morgavi DP, Pujos E, Tissandier A, Boudra H (2007) Screening of fermentative bacteria for their ability to bind and biotransform deoxynivalenol, zearalenone and fumonisins in an in vitro simulated corn silage model. Food Addit Contam 24:406–415. CrossRefPubMedGoogle Scholar
  37. Nirenberg H (1976) Untersuchungen über die morphologische und biologische Differenzierung in der Fusarium-Sektion Liseola. Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft (Berlin-Dahlem) 169.
  38. Oerke E-C, Meier A, Dehne H-W, Sulyok M, Krska R, Steiner U (2010) Spatial variability of Fusarium head blight pathogens and associated mycotoxins in wheat crops. Plant Pathol 59:671–682. CrossRefGoogle Scholar
  39. Oldenburg E, Ellner F (2005) Fusarium mycotoxins in forage maize - detection and evaluation. Mycotoxin Res 21:105–107. CrossRefPubMedGoogle Scholar
  40. Oldenburg E, Höppner F, Ellner F, Weinert J (2017) Fusarium diseases of maize associated with mycotoxin contamination of agricultural products intended to be used for food and feed. Mycotoxin Res 33:167–182. CrossRefPubMedGoogle Scholar
  41. Pahlow G, Muck RE, Driehuis F, Oude Elferink SJ, Spoelstra SF (eds) (2003) Microbiology of Ensiling. In: Silage science and technology 42, p. 31-93. Agronomy Monograph. American Society of Agronomy, Crop Science Society of America, Soil Science Society of AmericaGoogle Scholar
  42. Pestka JJ (2007) Deoxynivalenol: toxicity, mechanisms and animal health risks. Anim Feed Sci Tech 137:283–298. CrossRefGoogle Scholar
  43. Poppenberger B, Berthiller F, Lucyshyn D, Sieberer T, Schuhmacher R, Krska R, Kuchler K, Glössl J, Luschnig C, Adam G (2003) Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. J Biol Chem 278:47905–47914. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Richter WIF, Schuster M, Rattenberger E (2002) Einfluss der Fermentation von Silomais auf die Nachweisbarkeit von Deoxynivalenol (DON). Mycotoxin Res 18:16–19. CrossRefPubMedGoogle Scholar
  45. Robledo A, Aguilar CN, Belmares-Cerda RE, Flores-Gallegos AC, Contreras-Esquivel JC, Montañez JC, Mussatto SI (2015) Production of thermostable xylanase by thermophilic fungal strains isolated from maize silage. CYTA-J. Food 14:302–308. CrossRefGoogle Scholar
  46. Rotter RG, Marquardt RR, Frohlich AA, Abramson D (1990) Ensiling as a means of reducing ochratoxin A concentrations in contaminated barley. J Sci Food Agric 50:155–166. CrossRefGoogle Scholar
  47. Schaarschmidt S, Fauhl-Hassek C (2018) The fate of mycotoxins during the processing of wheat for human consumption. Compr Rev Food Sci Food Saf 17:556–593. CrossRefGoogle Scholar
  48. Schaarschmidt F, Vaas LAI (2009) Analysis of trials with complex treatment structure using multiple contrast tests. HortScience 44:188–195CrossRefGoogle Scholar
  49. Schollenberger M, Müller H-M, Rüfle M, Suchy S, Plank S, Drochner W (2006) Natural occurrence of 16 Fusarium toxins in grains and feedstuffs of plant origin from Germany. Mycopathologia 161:43–52. CrossRefPubMedGoogle Scholar
  50. Schollenberger M, Müller H-M, Ernst K, Sondermann S, Liebscher M, Schlecker C, Wischer G, Drochner W, Hartung K, Piepho H-P (2012) Occurrence and distribution of 13 trichothecene toxins in naturally contaminated maize plants in Germany. Toxins 4:778–787. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Tinyiro SE, Wokadala C, Xu D, Yao W (2011) Adsorption and degradation of zearalenone by Bacillus strains. Folia Microbiol 56:321–327. CrossRefGoogle Scholar
  52. Wang W, Soliman S, Li X-Z, Zhu H-h, Yang L, Yin Y-l, Zhou T (eds) (2015) Medicine sciences and bioengineering: transformation of trichothecene acetyldeoxynivalenol to deoxynivalenol by bacterial acetyltransferase. CRC PressGoogle Scholar
  53. Weinberg Z (1996) New trends and opportunities in the development and use of inoculants for silage. FEMS Microbiol Rev 19:53–68. CrossRefGoogle Scholar
  54. Yi P-J, Pai C-K, Liu J-R (2011) Isolation and characterization of a Bacillus licheniformis strain capable of degrading zearalenone. World J Microbiol Biotechnol 27:1035–1043. CrossRefGoogle Scholar
  55. Zinedine A, Soriano JM, Moltó JC, Mañes J (2007) Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food Chem Toxicol 45:1–18. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Society for Mycotoxin (Research Gesellschaft für Mykotoxinforschung e.V.) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Tolke Jensen
    • 1
    Email author
  • Marthe De Boevre
    • 2
  • Sarah De Saeger
    • 2
  • Nils Preußke
    • 3
  • Frank D. Sönnichsen
    • 3
  • Ewald Kramer
    • 4
  • Holger Klink
    • 1
  • Joseph-Alexander Verreet
    • 1
  • Tim Birr
    • 1
  1. 1.Institute of PhytopathologyKiel UniversityKielGermany
  2. 2.Centre of Excellence in Mycotoxicology and Public HealthGhent UniversityGhentBelgium
  3. 3.Otto Diels Institute for Organic ChemistryKiel UniversityKielGermany
  4. 4.ISF GmbHPinnebergGermany

Personalised recommendations