Advertisement

Mycotoxin Research

, Volume 35, Issue 4, pp 329–340 | Cite as

Volatile 1-octen-3-ol increases patulin production by Penicillium expansum on a patulin-suppressing medium

  • Kayla K. PennermanEmail author
  • Joseph B. Scarsella
  • Guo-Hua Yin
  • Sui-Sheng T. Hua
  • Thomas G. Hartman
  • Joan W. Bennett
Original Article

Abstract

1-Octen-3-ol is one of the most abundant volatile compounds associated with fungi and functions as a germination and growth inhibitor in several species. By investigating its effect on the biosynthesis of patulin, a mycotoxin made by Penicillium expansum, it was found that a sub-inhibitory level of volatile 1-octen-3-ol increased accumulation of patulin on a medium that normally suppresses the mycotoxin. Transcriptomic sequencing and comparisons of control and treated P. expansum grown on potato dextrose agar (PDA; patulin permissive) or secondary medium agar (SMA; patulin suppressive) revealed that the expression of gox2, a gene encoding a glucose oxidase, was significantly affected, decreasing 10-fold on PDA and increasing 85-fold on SMA. Thirty other genes, mostly involved in transmembrane transport, oxidation-reduction, and carbohydrate metabolism were also differently expressed on the two media. Transcription factors previously found to be involved in regulation of patulin biosynthesis were not significantly affected despite 1-octen-3-ol increasing patulin production on SMA. Further study is needed to determine the relationship between the upregulation of patulin biosynthesis genes and gox2 on SMA, and to identify the molecular mechanism by which 1-octen-3-ol induced this effect.

Keywords

gox2 1-Octen-3-ol Patulin Penicillium expansum Transcriptome Volatile 

Abbreviations

DMSO

Dimethyl sulfoxide

GC-MS

Gas chromatography-mass spectrometry

GO

Gene ontology

PCA

Principal component analysis

PDA

Potato dextrose agar

RT-PCR

Reverse transcription polymerase chain reaction

SMA

Secondary medium agar

TLC

Thin-layer chromatography

Notes

Sources of funding

This work was funded by the 2018 Rutgers TA/GA Professional Development Fund and the USDA-ARS Non-Assistance Cooperative Agreement (no. 58-2030-6-053). Use of a company or product name by the United States Department of Agriculture does not imply approval or recommendation of the product to the exclusion of others that may be suitable.

Compliance with ethical standards

Conflicts of interest

None.

References

  1. Alshannaq A, Yu J-H (2017) Occurrence, toxicity, and analysis of major mycotoxins in food. Int J Environ Res Public Health 14:632CrossRefGoogle Scholar
  2. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed October 2018
  3. Antoine AA, Anastasie S-YA, Bedikou ME, Jacqueline D, Philippe T, Niamké SL (2016) Study of the biological activity of 1-octen-3-ol in Penicillium canescens. Octa J Biosci 4:53–57CrossRefGoogle Scholar
  4. Ashoor SH, Chu FS (1973) Inhibition of muscle aldolase by penicillic acid and patulin in vitro. Food Cosmet Toxicol 11:995–1000.  https://doi.org/10.1016/0015-6264(73)90226-5 CrossRefPubMedGoogle Scholar
  5. Ballester AR, Marcet-Houben M, Levin E, Sela N, Selma-Lázaro C, Carmona L, Wisniewski M, Droby S, González-Candelas L, Gabaldón T (2015) Genome, transcriptome, and functional analyses of Penicillium expansum provide new insights into secondary metabolism and pathogenicity. Mol Plant-Microbe Interact 28:232–248.  https://doi.org/10.1094/mpmi-09-14-0261-fi CrossRefPubMedGoogle Scholar
  6. Barad S, Horowitz SB, Moscovitz O, Lichter A, Sherman A, Prusky D (2012) A Penicillium expansum glucose oxidase-encoding gene, gox2, is essential for gluconic acid production and acidification during colonization of deciduous fruit. Mol Plant-Microbe Interact 25:779–788.  https://doi.org/10.1094/MPMI-01-12-0002 CrossRefPubMedGoogle Scholar
  7. Barad S, Horowitz SB, Kobiler I, Sherman A, Prusky D (2014) Accumulation of the mycotoxin patulin in the presence of gluconic acid contributes to pathogenicity of Penicillium expansum. Mol Plant-Microbe Interact 27:66–77.  https://doi.org/10.1094/MPMI-05-13-0138-R CrossRefPubMedGoogle Scholar
  8. Barad S, Espeso EA, Sherman A, Prusky D (2016) Ammonia activates pacC and patulin accumulation in an acidic environment during apple colonization by Penicillium expansum. Mol Plant Pathol 17:727–740.  https://doi.org/10.1111/mpp.12327 CrossRefPubMedGoogle Scholar
  9. Bennett JW, Goldblatt LA (1973) The isolation of mutants of Aspergillus flavus and A. parasiticus with altered aflatoxin producing ability. Sabouraudia 11:235–241CrossRefGoogle Scholar
  10. Berendsen RL, Kalkhove SI, Lugones LG, Baars JJ, Wosten HA, Bakker PA (2013) Effects of the mushroom-volatile 1-octen-3-ol on dry bubble disease. Appl Microbiol Biotechnol 97:5535–5543.  https://doi.org/10.1007/s00253-013-4793-1 CrossRefPubMedGoogle Scholar
  11. Betina V (1984) Mycotoxins as secondary metabolites. In: Betina V (ed) Mycotoxins production, isolation, separation and purification. Developments in Food Science, vol 8. Elsevier, Amsterdam, pp 13–24Google Scholar
  12. Bu’Lock JD, Ryan AJ (1958) The biogenesis of patulin. Proc Chem Soc 158:222–223Google Scholar
  13. Chen H, Boutros PC (2011) VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics 12(35).  https://doi.org/10.1186/1471-2105-12-35
  14. Chen Y, Li B, Xu X, Zhang Z, Tian S (2018) The pH-responsive PacC transcription factor plays pivotal roles in virulence and patulin biosynthesis in Penicillium expansum. Environ Microbiol 20:4063–4078.  https://doi.org/10.1111/1462-2920.14453 CrossRefPubMedGoogle Scholar
  15. Cheon W, Kim YS, Balaraju K, Kim BS, Lee BH, Jeon Y (2016) Postharvest disease control of Colletotrichum gloeosporioides and Penicillium expansum on stored apples by gamma irradiation combined with fumigation. Plant Pathol J 32:460–468.  https://doi.org/10.5423/ppj.Oa.03.2016.0062 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chitarra GS, Abee T, Rombouts FM, Posthumus MA, Dijksterhuis J (2004) Germination of Penicillium paneum conidia is regulated by 1-octen-3-ol, a volatile self-inhibitor. Appl Environ Microbiol 70:2823–2829CrossRefGoogle Scholar
  17. Chitarra GS, Abee T, Rombouts FM, Dijksterhuis J (2005) 1-Octen-3-ol inhibits conidia germination of Penicillium paneum despite of mild effects on membrane permeability, respiration, intracellular pH, and changes the protein composition. FEMS Microbiol Ecol 54:67–75.  https://doi.org/10.1016/j.femsec.2005.02.013 CrossRefPubMedGoogle Scholar
  18. Crawford JM, Townsend CA (2010) New insights into the formation of fungal aromatic polyketides. Nat Rev Microbiol 8:879–889.  https://doi.org/10.1038/nrmicro2465 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cunningham F, Achuthan P, Akanni W, Allen J, Amode MR, Armean IM, Bennett R, Bhai J, Billis K, Boddu S, Cummins C, Davidson C, Dodiya KJ, Gall A, Girón CG, Gil L, Grego T, Haggerty L, Haskell E, Hourlier T, Izuogu OG, Janacek SH, Juettemann T, Kay M, Laird MR, Lavidas I, Liu Z, Loveland JE, Marugán JC, Maurel T, McMahon AC, Moore B, Morales J, Mudge JM, Nuhn M, Ogeh D, Parker A, Parton A, Patricio M, Abdul Salam AI, Schmitt BM, Schuilenburg H, Sheppard D, Sparrow H, Stapleton E, Szuba M, Taylor K, Threadgold G, Thormann A, Vullo A, Walts B, Winterbottom A, Zadissa A, Chakiachvili M, Frankish A, Hunt SE, Kostadima M, Langridge N, Martin FJ, Muffato M, Perry E, Ruffier M, Staines DM, Trevanion SJ, Aken BL, Yates AD, Zerbino DR, Flicek P (2018) Ensembl 2019. Nucleic Acids Res 47:D745–D751.  https://doi.org/10.1093/nar/gky1113 CrossRefPubMedCentralGoogle Scholar
  20. de Carvalho DS, Dionísio A, dos Santos R, Boguzs SJ, Godoy HT, Pastore G (2011) Production of 1-octen-3-ol by Neurospora species isolated from beiju in different culture medium. Procedia Food Sci 1:1694–1699.  https://doi.org/10.1016/j.profoo.2011.09.250 CrossRefGoogle Scholar
  21. de Clercq N, Vlaemynck G, Van Pamel E, Van Weyenberg S, Herman L, Devlieghere F, de Meulenaer B, Van Coillie E (2016) Isoepoxydon dehydrogenase (idh) gene expression in relation to patulin production by Penicillium expansum under different temperature and atmosphere. Int J Food Microbiol 220:50–57.  https://doi.org/10.1016/j.ijfoodmicro.2016.01.004 CrossRefPubMedGoogle Scholar
  22. de Lucca AJ, Carter-Wientjes CH, Boue S, Bhatnagar D (2011) Volatile trans-2-hexenal, a soybean aldehyde, inhibits Aspergillus flavus growth and aflatoxin production in corn. J Food Sci 76:M381–M386.  https://doi.org/10.1111/j.1750-3841.2011.02250.x CrossRefPubMedGoogle Scholar
  23. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21.  https://doi.org/10.1093/bioinformatics/bts635 CrossRefGoogle Scholar
  24. El Hajj Assaf C, Snini SP, Tadrist S, Bailly S, Naylies C, Oswald IP, Lorber S, Puel O (2018) Impact of veA on the development, aggressiveness, dissemination and secondary metabolism of Penicillium expansum. Mol Plant Pathol 19:1971–1983.  https://doi.org/10.1111/mpp.12673 CrossRefPubMedCentralGoogle Scholar
  25. Fountain JC, Scully BT, Chen ZY, Gold SE, Glenn AE, Abbas HK, Lee RD, Kemerait RC, Guo B (2015) Effects of hydrogen peroxide on different toxigenic and atoxigenic isolates of Aspergillus flavus. Toxins (Basel) 7:2985–2999.  https://doi.org/10.3390/toxins7082985 CrossRefGoogle Scholar
  26. Fountain JC, Bajaj P, Pandey M, Nayak SN, Yang L, Kumar V, Jayale AS, Chitikineni A, Zhuang W, Scully BT, Lee RD, Kemerait RC, Varshney RK, Guo B (2016) Oxidative stress and carbon metabolism influence Aspergillus flavus transcriptome composition and secondary metabolite production. Sci Rep 6:38747.  https://doi.org/10.1038/srep38747 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Goodrich-Tanrikulu M, Mahoney NE, Rodriguez SB (1995) The plant growth regulator methyl jasmonate inhibits aflatoxin production by Aspergillus flavus. Microbiol 141:2831–2837.  https://doi.org/10.1099/13500872-141-11-2831 CrossRefGoogle Scholar
  28. Grintzalis K, Vernardis SI, Klapa MI, Georgiou CD (2014) Role of oxidative stress in sclerotial differentiation and aflatoxin B1 biosynthesis in Aspergillus flavus. Appl Environ Microbiol 80:5561–5571.  https://doi.org/10.1128/aem.01282-14 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hadas Y, Goldberg I, Pines O, Prusky D (2007) Involvement of gluconic acid and glucose oxidase in the pathogenicity of Penicillium expansum in apples. Phytopathology 97:384–390.  https://doi.org/10.1094/phyto-97-3-0384 CrossRefPubMedGoogle Scholar
  30. Hanson JR (2008a) Mycotoxins. In: The chemistry of fungi. RSC Publishing, Cambridge, pp 165–176.  https://doi.org/10.1039/9781847558329 CrossRefGoogle Scholar
  31. Hanson JR (2008b) Pigments and odours of fungi. In: The chemistry of fungi. RSC Publishing, Cambridge, pp 127–146Google Scholar
  32. Hanson JR (2008c) Polyketides from fungi. In: The chemistry of fungi. RSC Publishing, Cambridge, pp 47–72Google Scholar
  33. Hayes AW, Phillips TD, Williams WL, Ciegler A (1979) Acute toxicity of patulin in mice and rats. Toxicol 13:91–100.  https://doi.org/10.1016/S0300-483X(79)80014-1 CrossRefGoogle Scholar
  34. Herrero-Garcia E, Garzia A, Cordobés S, Espeso EA, Ugalde U (2011) 8-Carbon oxylipins inhibit germination and growth, and stimulate aerial conidiation in Aspergillus nidulans. Fungal Biol 115:393–400.  https://doi.org/10.1016/j.funbio.2011.02.005 CrossRefPubMedGoogle Scholar
  35. Hradec J, Vesely D (1989) The initiator tRNA acceptance assay as a short-term test for carcinogens. 4. Results with 20 mycotoxins. Carcinogenesis 10:213–215.  https://doi.org/10.1093/carcin/10.1.213 CrossRefPubMedGoogle Scholar
  36. Hsieh DP, Singh R, Yao RC, Bennett JW (1978) Anthraquinones in the biosynthesis of sterigmatocystin by Aspergillus versicolor. Appl Environ Microbiol 35:980–982PubMedPubMedCentralGoogle Scholar
  37. Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240.  https://doi.org/10.1093/bioinformatics/btu031 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kassambara A, Mundy F (2017) Extract and visualize the results of multivariate data analysesGoogle Scholar
  39. Kumar D, Barad S, Chen Y, Luo X, Tannous J, Dubey A, Glam Matana N, Tian S, Li B, Keller N, Prusky D (2017) LaeA regulation of secondary metabolism modulates virulence in Penicillium expansum and is mediated by sucrose. Mol Plant Pathol 18:1150–1163.  https://doi.org/10.1111/mpp.12469 CrossRefPubMedGoogle Scholar
  40. Lacey J (1989) Pre- and post-harvest ecology of fungi causing spoilage of foods and other stored products. In: Moss MO, Jarvis B, Skinner FA (eds) Filamentous FUngi in foods and feeds. Blackwell Scientific Publications, OxfordGoogle Scholar
  41. Lee KS, Röschenthaler R (1987) Strand scissions of DNA by patulin in the presence of reducing agents and cupric ions. J Antibiot (Tokyo) 40:692–696CrossRefGoogle Scholar
  42. Lee LS, Bennett JW, Cucullu AF, Stanley JB (1975) Synthesis of versicolorin A by a mutant strain of Aspergillus parasiticus deficient in aflatoxin production. J Agric Food Chem 23:1132–1134CrossRefGoogle Scholar
  43. Lee LS, Bennett JW, Cucullu AF, Ory RL (1976) Biosynthesis of aflatoxin B1. Conversion of versicolorin A to aflatoxin B1 by Aspergillus parasiticus. J Agric Food Chem 24:1167–1170CrossRefGoogle Scholar
  44. Leiter E, Marx F, Pusztahelyi T, Haas H, Pocsi I (2004) Penicillium chrysogenum glucose oxidase—a study on its antifungal effects. J Appl Microbiol 97:1201–1209.  https://doi.org/10.1111/j.1365-2672.2004.02423.x CrossRefPubMedGoogle Scholar
  45. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079.  https://doi.org/10.1093/bioinformatics/btp352 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(550):550.  https://doi.org/10.1186/s13059-014-0550-8 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Mannaa M, Oh JY, Kim KD (2017) Biocontrol activity of volatile-producing Bacillus megaterium and Pseudomonas protegens against Aspergillus flavus and aflatoxin production on stored rice grains. Mycobiology 45:213–219.  https://doi.org/10.5941/myco.2017.45.3.213 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Miyamoto K, Murakami T, Kakumyan P, Keller NP, Matsui K (2014) Formation of 1-octen-3-ol from Aspergillus flavus conidia is accelerated after disruption of cells independently of Ppo oxygenases, and is not a main cause of inhibition of germination. PeerJ 2:e395.  https://doi.org/10.7717/peerj.395 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Nemčovič M, Jakubíková L, Viden I, Farkaš V (2008) Induction of conidiation by endogenous volatile compounds in Trichoderma spp. FEMS Microbiol Lett 284:231–236.  https://doi.org/10.1111/j.1574-6968.2008.01202.x CrossRefPubMedGoogle Scholar
  50. Neri F, Mari M, Menniti AM, Brigati S (2006) Activity of trans-2-hexenal against Penicillium expansum in ‘Conference’ pears. J Appl Microbiol 100:1186–1193.  https://doi.org/10.1111/j.1365-2672.2006.02873.x CrossRefPubMedGoogle Scholar
  51. NIST Mass Spectrometry Data Center. NIST Mass Spectral Search Program for the NIST/EPA/NIH EI and NIST Tandem Mass Spectral Library version 2.3, build May 4 2017.Google Scholar
  52. Padhi S, Dias I, Korn VL, Bennett JW (2018) Pseudogymnoascus destructans: causative agent of white-nose syndrome in bats is inhibited by safe volatile organic compounds. J Fungi (Basel) 4.  https://doi.org/10.3390/jof4020048 CrossRefGoogle Scholar
  53. Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295.  https://doi.org/10.1038/nbt.3122 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Pitt JI (1994) The current role of Aspergillus and Penicillium in human and animal health. J Med Vet Mycol 32:17–32CrossRefGoogle Scholar
  55. Prakash A, Yogeeshwari S, Sircar S, Agrawal S (2011) Protein domain of unknown function 3233 is a translocation domain of autotransporter secretory mechanism in gamma proteobacteria. PLoS One 6:e25570.  https://doi.org/10.1371/journal.pone.0025570 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Puel O, Tadrist S, Delaforge M, Oswald IP, Lebrihi A (2007) The inability of Byssochlamys fulva to produce patulin is related to absence of 6-methylsalicylic acid synthase and isoepoxydon dehydrogenase genes. Int J Food Microbiol 115:131–139.  https://doi.org/10.1016/j.ijfoodmicro.2006.10.016 CrossRefPubMedGoogle Scholar
  57. Puel O, Galtier P, Oswald IP (2010) Biosynthesis and toxicological effects of patulin. Toxins (Basel) 2:613–631.  https://doi.org/10.3390/toxins2040613 CrossRefGoogle Scholar
  58. Reverberi M, Ricelli A, Zjalic S, Fabbri A, Fanelli C (2010) Natural functions of mycotoxins and control of their biosynthesis in fungi. Appl Microbiol Biotechnol 87:899–911.  https://doi.org/10.1007/s00253-010-2657-5 CrossRefPubMedGoogle Scholar
  59. Rosenberger DA (1997) Recent research and changing options for controlling postharvest decays of apples. In: Proc harvesting. Harvesting, handling, and storage workshop. Northeast Reg. Agric. Eng. Serv. Publ. NRAES-112 14 Aug. 1997. Cornell University, Ithaca, New York, USAGoogle Scholar
  60. Roze LV, Koptina AV, Laivenieks M, Beaudry RM, Jones DA, Kanarsky AV, Linz JE (2011) Willow volatiles influence growth, development, and secondary metabolism in Aspergillus parasiticus. Appl Microbiol Biotechnol 92:359–370.  https://doi.org/10.1007/s00253-011-3339-7 CrossRefPubMedGoogle Scholar
  61. Roze LV, Laivenieks M, Hong SY, Wee J, Wong SS, Vanos B, Awad D, Ehrlich KC, Linz JE (2015) Aflatoxin biosynthesis is a novel source of reactive oxygen species—a potential redox signal to initiate resistance to oxidative stress? Toxins (Basel) 7:1411–1430.  https://doi.org/10.3390/toxins7051411 CrossRefGoogle Scholar
  62. Sakai M, Abe K, Okumura H, Kawamura O, Sugiura Y, Horie Y, Ueno Y (1992) Genotoxicity of fungi evaluated by SOS microplate assay. Nat Toxins 1:27–34CrossRefGoogle Scholar
  63. Sanzani SM, Reverberi M, Punelli M, Ippolito A, Fanelli C (2012) Study on the role of patulin on pathogenicity and virulence of Penicillium expansum. Int J Food Microbiol 153:323–331.  https://doi.org/10.1016/j.ijfoodmicro.2011.11.021 CrossRefPubMedGoogle Scholar
  64. Schumacher DM, Muller C, Metzler M, Lehmann L (2006) DNA-DNA cross-links contribute to the mutagenic potential of the mycotoxin patulin. Toxicol Lett 166:268–275.  https://doi.org/10.1016/j.toxlet.2006.08.002 CrossRefPubMedGoogle Scholar
  65. Snini SP, Tannous J, Heuillard P, Bailly S, Lippi Y, Zehraoui E, Barreau C, Oswald IP, Puel O (2016) Patulin is a cultivar-dependent aggressiveness factor favouring the colonization of apples by Penicillium expansum. Mol Plant Pathol 17:920–930.  https://doi.org/10.1111/mpp.12338 CrossRefPubMedGoogle Scholar
  66. Taguchi T, Kozutsumi D, Nakamura R, Sato Y, Ishihara A, Nakajima H (2013) Effects of aliphatic aldehydes on the growth and patulin production of Penicillium expansum in apple juice. Biosci Biotechnol Biochem 77:138–144.  https://doi.org/10.1271/bbb.120629 CrossRefPubMedGoogle Scholar
  67. Tanenbaum SW, Bassett EW (1959) The biosynthesis of patulin. III. Evidence for a molecular rearrangement of the aromatic ring. J Biol Chem 234:1861–1866PubMedGoogle Scholar
  68. Tannous J, El Khoury R, Snini SP, Lippi Y, El Khoury A, Atoui A, Lteif R, Oswald IP, Puel O (2014) Sequencing, physical organization and kinetic expression of the patulin biosynthetic gene cluster from Penicillium expansum. Int J Food Microbiol 189:51–60.  https://doi.org/10.1016/j.ijfoodmicro.2014.07.028 CrossRefPubMedGoogle Scholar
  69. Tannous J, Keller NP, Atoui A, El Khoury A, Lteif R, Oswald IP, Puel O (2018a) Secondary metabolism in Penicillium expansum: emphasis on recent advances in patulin research. Crit Rev Food Sci Nutr 58:2082–2098.  https://doi.org/10.1080/10408398.2017.1305945 CrossRefPubMedGoogle Scholar
  70. Tannous J, Kumar D, Sela N, Sionov E, Prusky D, Keller NP (2018b) Fungal attack and host defence pathways unveiled in near-avirulent interactions of Penicillium expansum creA mutants on apples. Mol Plant Pathol 19:2635–2650.  https://doi.org/10.1111/mpp.12734 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Touhami N, Soukup ST, Schmidt-Heydt M, Kulling SE, Geisen R (2018) Citrinin as an accessory establishment factor of P. expansum for the colonization of apples. Int J Food Microbiol 266:224–233.  https://doi.org/10.1016/j.ijfoodmicro.2017.12.007 CrossRefPubMedGoogle Scholar
  72. Vergopoulou S, Galanopoulou D, Markaki P (2001) Methyl jasmonate stimulates aflatoxin B1 biosynthesis by Aspergillus parasiticus. J Agric Food Chem 49:3494–3498CrossRefGoogle Scholar
  73. Viñas I, Vallverdu N, Monllao S, Usall J, Sanchis V (1993) Imazalil resistant Penicillium isolates from Spanish apple packinghouses. Mycopathologia 123:27–33.  https://doi.org/10.1007/BF01103485 CrossRefGoogle Scholar
  74. Vu V (2011) ggbiplot: a ggplot2 based biplot. R package version 0.55 edn. http://github.com/vqv/ggbiplot,
  75. Welke JE, Hoeltz M, Dottori HA, Noll IB (2011) Patulin accumulation in apples during storage by Penicillium expansum and Penicillium griseofulvum strains. Braz J Microbiol 2:172–180.  https://doi.org/10.1590/S1517-83822011000100021 CrossRefGoogle Scholar
  76. White S, O’Callaghan J, Dobson AD (2006) Cloning and molecular characterization of Penicillium expansum genes upregulated under conditions permissive for patulin biosynthesis. FEMS Microbiol Lett 255:17–26.  https://doi.org/10.1111/j.1574-6968.2005.00051.x CrossRefPubMedGoogle Scholar
  77. Wright MS, Greene-McDowelle DM, Zeringue HJ, Bhatnagar D, Cleveland TE (2000) Effects of volatile aldehydes from Aspergillus-resistant varieties of corn on Aspergillus parasiticus growth and aflatoxin biosynthesis. Toxicon 38:1215–1223CrossRefGoogle Scholar
  78. Würgler FE, Friederich U, Schlatter J (1991) Lack of mutagenicity of ochratoxin A and B, citrinin, patulin and cnestine in Salmonella typhimurium TA102. Mutat Res 261:209–216.  https://doi.org/10.1016/0165-1218(91)90069-X CrossRefPubMedGoogle Scholar
  79. Yabe K, Chihaya N, Hamamatsu S, Sakuno E, Hamasaki T, Nakajima H, Bennett JW (2003) Enzymatic conversion of averufin to hydroxyversicolorone and elucidation of a novel metabolic grid involved in aflatoxin biosynthesis. Appl Environ Microbiol 69:66–73CrossRefGoogle Scholar
  80. Yin G, Padhi S, Lee S, Hung R, Zhao G, Bennett JW (2015) Effects of three volatile oxylipins on colony development in two species of fungi and on Drosophila larval metamorphosis. Curr Microbiol 71:347–356.  https://doi.org/10.1007/s00284-015-0864-0 CrossRefPubMedGoogle Scholar
  81. Yu J, Jurick WM 2nd, Cao H, Yin Y, Gaskins VL, Losada L, Zafar N, Kim M, Bennett JW, Nierman WC (2014) Draft genome sequence of Penicillium expansum strain R19, which causes postharvest decay of apple fruit. Genome Announc 2.  https://doi.org/10.1128/genomeA.00635-14
  82. Zeringue HJ, Bhatnagar D (1994) Effects of neem leaf volatiles on submerged cultures of aflatoxigenic Aspergillus parasiticus. Appl Environ Microbiol 60:3543–3547PubMedPubMedCentralGoogle Scholar
  83. Zeringue HJ Jr (1991) Effect of C6 to C9 alkenals on aflatoxin production in corn, cottonseed, and peanuts. Appl Environ Microbiol 57:2433–2434PubMedPubMedCentralGoogle Scholar
  84. Zeringue HJ Jr, McCormick SP (1990) Aflatoxin production in cultures of Aspergillus flavus incubated in atmospheres containing selected cotton leaf-derived volatiles. Toxicon 28:445–448CrossRefGoogle Scholar
  85. Zong Y, Li B, Tian S (2015) Effects of carbon, nitrogen and ambient pH on patulin production and related gene expression in Penicillium expansum. Int J Food Microbiol 206:102–108.  https://doi.org/10.1016/j.ijfoodmicro.2015.05.007 CrossRefPubMedGoogle Scholar

Copyright information

© Society for Mycotoxin (Research Gesellschaft für Mykotoxinforschung e.V.) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Plant Biology, Rutgers UniversityThe State University of New JerseyNew BrunswickUSA
  2. 2.Department of Food Science, Rutgers UniversityThe State University of New JerseyNew BrunswickUSA
  3. 3.Foodborne Toxin Detection and Prevention Research, United States Department of AgricultureAgricultural Research ServiceAlbanyUSA

Personalised recommendations