Advertisement

Mycotoxin Research

, Volume 35, Issue 1, pp 55–64 | Cite as

Effect of atrazine on growth and production of AFB1 in Aspergillus section Flavi strains isolated from maize soils

  • Nicolás Benito
  • Cecilia Soledad Carranza
  • Carina Elizabeth Magnoli
  • Carla Lorena BarberisEmail author
Original Article
  • 67 Downloads

Abstract

Atrazine is one of the most frequently used herbicides in Argentina for controlling broadleaf weeds and annual grasses. Currently, there is limited information on the impact of triazine herbicides on mycotoxin production and growth parameters of toxigenic fungi in maize. The objective of this study was to evaluate the effect of different concentrations of atrazine on the lag phase prior to growth, the growth rate, and on production of aflatoxin B1 (AFB1) of Aspergillus flavus and Aspergillus parasiticus strains, on maize meal extract agar (MMEA) under different water activities (aW) and temperatures. A commercial formulation of atrazine was added to MMEA medium at 0, 5, 10, 50, or 100 mmol/l, adjusted to 0.98, 0.95, and 0.93 aW, and incubated at 28 °C and 37 °C for 21 days. AFB1 was determined by HPLC after 7, 14, and 21 days of incubation. In the control treatments, a significant increase in the time prior to growth was observed and as the aW decreased, at both temperatures, the growth rate of the strains also decreased. A significant increase in growth rate was observed as the concentration of atrazine in the medium increased, for all aW levels tested. The optimal conditions for the accumulation of AFB1 in the control treatments were 0.98 aW and 28 °C, after 7 days of incubation. As the concentration of herbicide increased, AFB1 production also increased (P < 0.05). These results add to the knowledge about consequences with regard to aflatoxin production of the use of excessive atrazine doses in extensive maize culture.

Keywords

Atrazine Aspergillus flavus Aspergillus parasiticus Water activity Temperature Growth parameters Production of aflatoxin B1 

Notes

Funding information

The study received financial support by Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT-PICT-0943/14) and Secretaría de Ciencia y Técnica, Universidad Nacional de Río Cuarto (SECYT-UNRC-18/453).

Compliance with ethical standards

Conflict of interest

None.

References

  1. Barberis CL, Astoreca A, Fernandez-Juri MG, Dalcero AM, Magnoli CE (2010) Effect of antioxidant mixtures on growth and ochratoxin A production of Aspergillus section Nigri species under different water activity conditions on peanut meal extract agar. Toxins 2:1399–1413CrossRefGoogle Scholar
  2. Barberis CL, Carranza CS, Chiacchiera SM, Magnoli CE (2013) Influence of herbicide glyphosate on growth and aflatoxin B1 production by Aspergillus section Flavi strains isolated from soil on in vitro assay. J Environ Sci Health B 48:1070–1079CrossRefGoogle Scholar
  3. Bastos AC, Magan N (2009) Trametes versicolor: potential for atrazine bioremediation in calcareous clay soil, under low water availability conditions. Int Biodet Biodeg 63:389–394CrossRefGoogle Scholar
  4. Bending GD, Friloux M, Walker A (2002) Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential. FEMS Microbiol Lett 212:59–63CrossRefGoogle Scholar
  5. Bennett JW (2010) An overview of the genus Aspergillus. Mol Biol Genom 1:1–17Google Scholar
  6. Carranza CS, Barberis CL, Chiacchiera SM, Magnoli CE (2014a) Influence of the pesticides glyphosate, chlorpyrifos and atrazine on growth parameters of nonochratoxigenic Aspergillus section Nigri strains isolated from agricultural soils. J Environ Sci Health, Part B 49:747–755CrossRefGoogle Scholar
  7. Carranza CS, Bergesio MV, Barberis CL, Chiacchiera SM, Magnoli CE (2014b) Survey of Aspergillus section Flavi presence in agricultural soils and effect of glyphosate on nontoxigenic A. flavus growth on soil-based medium. J Appl Microbiol 116:1229–1240CrossRefGoogle Scholar
  8. Carranza CS, Barberis CL, Chiacchiera SM, Magnoli CE (2017) Assessment of growth of Aspergillus spp. from agricultural soils in the presence of glyphosate. Rev Arg Microbiol 49:384–393Google Scholar
  9. Carvajal M (2013) Transformación de la aflatoxina B1 de alimentos, en el cancerígeno humano aducto AFB1-ADN. TIP Revista Especializada en Ciencias Químico-Biológicas UNAM 16:109–120CrossRefGoogle Scholar
  10. Dallyn H, Fox A (1980) Spoilage of material of reduced water activity by xerophilic fungi. In: Gould G, Corry E (eds) Microbial growth and survival in extremes of environment. Academic Press, London, pp 129–139Google Scholar
  11. De Gerónimo E, Aparicio VC, Bárbaro S, Portocarrero R, Jaime S, Costa JL (2014) Presence of pesticides in surface water from four sub-basins in Argentina. Chemosphere 107:423–431CrossRefGoogle Scholar
  12. Entry JA, Donnelly PK, Emmingham WH (1996) Mineralization of atrazine and 2,4-D in soils inoculated with Phanerochaete chrysosporium and Trappea darkeri. Appl Soil Ecol 3:85–90CrossRefGoogle Scholar
  13. European Commission (2004) Commission decision 2004/248/EC of 10 March 2004 concerning the non-inclusion of atrazine in Annex I to council directive 91/414/EEC and the withdrawal of authorizations for plant protection products containing this active substance. Offl J Eur Comm 078:53–55Google Scholar
  14. Ficociello B, Sturchio E, Minoia C, Casorri L, Imbriani P, Signorini S (2010) Epigenetics and environmental exposure to xenobiotics. G Ital Med Lav Ergon 32:13–22Google Scholar
  15. Geisen R (1996) Multiplex polymerase chain reaction for the detection of potential aflatoxin and sterigmatocystin producing fungi. Appl Microbiol 19:388–392CrossRefGoogle Scholar
  16. Giddings JM, Anderson TA, Hall LW Jr, Hosmer AJ, Kendall RJ, Richards RP, Solomon KR, Williams WM (2005) Atrazine in north American surface waters: a probabilistic aquatic ecological risk assessment. SETAC Press, Pensacola, p 392Google Scholar
  17. Gopi V, Upgade A, Soundararajan N (2012) Bioremediation potential of individual and consortium non-adapted fungal strains on Azodye containing textile effluent. Adv Appl Sci Res 3:303–311Google Scholar
  18. Graymore M, Stagnitti F, Allison G (2001) Impacts of atrazine in aquatic ecosystems. Environ Int 26:483–495CrossRefGoogle Scholar
  19. Hasan HAH (1999a) Mode of action of pesticides on aflatoxin biosynthesis and oxidase system activity. Microbiol Res 154:95–102CrossRefGoogle Scholar
  20. Hasan HAH (1999b) Fungal utilization of organophosphate pesticides and their degradation by Aspergillus flavus and A. sydowii in soil. Folia Microbiol 44:77–84CrossRefGoogle Scholar
  21. Hayes T, Haston K, Tsui M, Hoang A, Haeffele C, Vonk A (2003) Atrazine-induced hermaphroditism at 0.1 ppb in American leopard frogs (Rana pipiens): laboratory and field evidence. Environ Health Persp 111:568–575CrossRefGoogle Scholar
  22. Ibiene AA, Orji FA, Ezidi CO, Ngwobia CL (2011) Bioremediation of hydrocarbon contaminated soil in the Niger Delta using spent mushroom compost and other organic wastes. Niger J Agric Food Environ 7:1–7Google Scholar
  23. International Agency for Research on Cancer (IARC) (1993) Evaluation of carcinogenic risks of chemical to humans. Some naturally-occurring substances: food items and constituents. In: Heterocyclic aromatic amines and mycotoxins, vol 56. IARC monographs, Lyon, pp 359–362Google Scholar
  24. Jablonowski ND, Hamacher G, Martinazzo R, Langen U, Köppchen S, Hofmann D, Burauel P (2010) Metabolism and persistence of atrazine in several field soils with different atrazine application histories. J Agric Food Chem 58:12869–12877CrossRefGoogle Scholar
  25. Klich MA (2002) Biogeography of Aspergillus species in soil and litter. Mycology 94:21–27CrossRefGoogle Scholar
  26. Krzysko-Łupicka T, Strof W, Kubs K, Skorupa M, Wieczorek P, Lejczak B, Kafarski P (1997) The ability of soil-borne fungi to degrade organophosphonate carbon-to-phosphorus bonds. Appl Microbiol Biotechnol 48:549–552CrossRefGoogle Scholar
  27. Lahlali R, Serrhini MN, Jijakli MH (2005) Studying and modeling the combined effect of water activity and temperature on growth rate of P. expansum. Int J Food Microbiol 103:315–322CrossRefGoogle Scholar
  28. Lasserre JP, Fack F, Revets D, Planchon S, Renaut J, Hoffmann L, Gutleb AC, Muller CP, Bohn T (2009) Effects of the endocrine disruptors atrazine and PCB 153 on the protein expression of MCF-7 human cells. J Proteome Res 8:5485–5496CrossRefGoogle Scholar
  29. MacLennan PA, Delzell E, Sathiakumar N, Myers SL, Cheng H, Grizzle W, Chen VW, Wu XC (2002) Cancer incidence among triazine herbicide manufacturing workers. J Occup Environ Med 44:1048–1058CrossRefGoogle Scholar
  30. Madariaga-Navarrete A, Rodríguez-Pastrana BR, Villagómez-Ibarra JR, Acevedo-Sandoval OA, Perry G, Islas-Pelcastre M (2017) Bioremediation model for atrazine contaminated agricultural soils using phytoremediation (using Phaseolus vulgaris L.) and a locally adapted microbial consortium. J Environ Sci Health, Part B 52:367–375CrossRefGoogle Scholar
  31. Maldonado CE, Rivera CMC, Izquierdo RF, Palma LDJ (2010) Efectos de rizósfera, microorganismos y fertilización en la biorremediación y fitorremediación de suelos con petróleos crudo nuevo e intemperizado. Universidad y Ciencia 26:121–136Google Scholar
  32. Mougin C, Laugero C, Asther M, Dubroca J, Frasse P, Asther M (1994) Biotransformation of the herbicide atrazine by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 60:705–708Google Scholar
  33. Passone MA, Resnik SL, Etcheverry MG (2005) In vitro effect of phenolic antioxidants on germination, growth and aflatoxin B1 accumulation by peanut Aspergillus section Flavi. J Appl Microbiol 99:682–691CrossRefGoogle Scholar
  34. Perrone G, Susca A, Cozzi G, Ehrlich K, Varga J, Frisvad JC, Meijer M, Noonim P, Mahakarnchanakul W, Samson RA (2007) Biodiversity of Aspergillus species in some important agricultural products. Stud Mycol 59:53–66CrossRefGoogle Scholar
  35. Pildain MB, Cabral D, Vaamonde G (2005) Poblaciones de Aspergillus flavus en maní cultivado en diferentes zonas agroecológicas de la Argentina, caracterización morfológica y toxigénica. RIA 34:3–19Google Scholar
  36. Quinn GP, Keough MJ (2002) Experimental design data analysis for biologists. United Kingdom, Cambridge University Press, Cambridge, p 553CrossRefGoogle Scholar
  37. Reddy KN, Abbas HK, Zablotowicz RM, Abel CA, Koger CH (2007) Mycotoxin occurrence and Aspergillus flavus soil propagules in a corn and cotton glyphosate-resistant cropping systems. Food Addit Contam 24:1367–1373CrossRefGoogle Scholar
  38. Ronco AE, Marino DJG, Abelando M, Almada P, Apartin CD (2016) Water quality of the main tributaries of the Paraná Basin: glyphosate and AMPA in surface water and bottom sediments. Environ Monitor Assessment 188(458):458.  https://doi.org/10.1007/s10661-016-5467-0 CrossRefGoogle Scholar
  39. Rothrock CS (1992) Tillage systems and plant disease. Soil Sci 154:308–315CrossRefGoogle Scholar
  40. Samson RA, Houbraken J, Thrane U, Frisvad JC, Andersen B (2010) Food and indoor fungi. Centraalboreeau Voorschimmelcultures Utrecht, Utrecht, p 390Google Scholar
  41. Samson RA, Visagie CM, Houbraken J, Hong SB, Hubka V, Klaassen CHW, Perrone G, Seifert KA, Susca A, Tanney JB, Varga J, Kocsubé S, Szigeti G, Yaguchi T, Frisvad JC (2014) Phylogeny, identification and nomenclature of the genus Aspergillus. Stud Mycol 78:141–173CrossRefGoogle Scholar
  42. Scursoni JA, Satorre EH (2010) Glyphosate management strategies, weed diversity and soybean yield in Argentina. Crop Prot 29:957–962CrossRefGoogle Scholar
  43. Sene L, Converti A, Ribeiro Secchi GA, De Cassia R, Simao G (2010) New aspects on atrazine biodegradation. Braz Arch Biol Technol 53:487–496CrossRefGoogle Scholar
  44. Singh B, Singh K (2016) Microbial degradation of herbicides. Crit Rev Microbiol 42:245–261CrossRefGoogle Scholar
  45. Székács A, Mörtl M, Darvas B (2015) Monitoring pesticide residues in surface and ground water in Hungary: surveys in 1990–2015. J Chem 2015(717948):1–15.  https://doi.org/10.1155/2015/717948 CrossRefGoogle Scholar
  46. Trucksess MW, Stack ME, Nesheim S, Albert R, Romer T (1994) Multifunctional column coupled with liquid chromatography for determination of aflatoxins B1, B2, G1 and G2 in corn, almonds, Brazil nuts, peanuts, and pistachio nuts: collaborative study. J AOAC Int 77:1512–1521Google Scholar
  47. Udiković-Kolić N, Colin S, Martin-Laurent F (2012) Evolution of atrazine-degrading capabilities in the environment. Appl Microbiol Biotechnol 96:1175–1189CrossRefGoogle Scholar
  48. Villamil Lepori EC, Bovi Mitre G, Nassetta M (2013) Situación actual de la contaminación por plaguicidas en Argentina. Rev Int Contam Amb 29:25–43Google Scholar
  49. Wiegand C, Krause E, Steinberg C, Pflugmacher S (2001) Toxicokinetics of atrazine in embryos of the zebrafish (Danio rerio). Ecotoxicol Environ Saf 49:199–205CrossRefGoogle Scholar
  50. Zain ME (2011) Impact of mycotoxins on humans and animals. J Saudi Chem Soc 15:129–144CrossRefGoogle Scholar

Copyright information

© Society for Mycotoxin Research and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nicolás Benito
    • 1
    • 2
  • Cecilia Soledad Carranza
    • 1
    • 3
  • Carina Elizabeth Magnoli
    • 1
    • 3
  • Carla Lorena Barberis
    • 1
    • 3
    Email author
  1. 1.Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico, Químicas y NaturalesUniversidad Nacional de Río CuartoRío CuartoArgentina
  2. 2.FONCYT (Fondo para la Investigación Científica y Tecnológica)Buenos AiresArgentina
  3. 3.CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas)Buenos AiresArgentina

Personalised recommendations