Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Ichnology of the Middle Jurassic hiatus concretions from Poland: implications for their formation, exhumation, and palaeoenvironment

  • 23 Accesses

Abstract

In the present study, the Middle Jurassic exhumed carbonate concretions (the so-called hiatus concretions) from the Polish Jura (southern Poland) were studied ichnologically (precursor burrows and their tiering and bioerosion patterns) in order to decipher the palaeoenvironmental conditions leading to their formation and exhumation. The ichnological approach to the concretionary bodies used in this study yielded information on the scale of seafloor erosion and its relative timing compared to the burrow-infilling phase. The bioerosion patterns also provided information on proximal-distal trends and the frequency and strength of currents in the environment below storm wave base, a setting recorded in the monotonous, concretion-bearing siliciclastic sections which is studied here. The significance of the stratigraphic sequence is also briefly discussed based on the horizons containing the hiatus concretions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Baird, G. (1976). Coral encrusted concretions: a key to recognition of a ‘shale on shale’ erosion surface. Lethaia, 9(3), 293–302.

  2. Baird, G. (1981). Submarine erosion on a gentle paleoslope: a study of two discontinuities in the New York Devonian. Lethaia, 14, 105–122.

  3. Bernardi, M., Boschele, S., Ferretti, P., & Avanzini, M. (2010). Echinoid burrow Bichordites monastiriensis from the Oligocene of NE Italy. Acta Palaeontologica Polonica, 55(3), 479–486.

  4. Braithwaite, C., & Talbot, M. (1972). Crustacean burrows in the Seychelles, Indian Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 11(4), 265–285.

  5. Brett, E. (1995). Sequence stratigraphy, biostratigraphy, and taphonomy in shallow marine environments. Palaios, 10(6), 597–616.

  6. Brett, C. E., Kirchner, B. T., Tsujita, C. J., & Dattilo, B. F. (2008). Depositional dynamics recorded in mixed siliciclastic-carbonate marine successions: insights from the Upper Ordovician Kope Formation of Ohio and Kentucky, USA. In B. R. Pratt & C. Holmden (Eds.), Dynamics of Epeiric Seas. Geological Society of Canada Special Paper, 48, pp. 73–102).

  7. Bromley, R. G. (1967). Some observations on burrows of thalassinidean Crustacea in chalk hardgrounds. Quarterly Journal of the Geological Society, 123(1-4), 157–177.

  8. Bromley, R. G. (1990). Trace fossils: Biology and taphonomy. London: Unwin Hyman.

  9. Bromley, R. G. (1994). The palaeoecology of bioerosion. In S. Donovan (Ed.), The Palaeobiology of Trace Fossils (pp. 134–154). Chichester, New York, Brisbane, Toronto, Singapore: Wiley.

  10. Bromley, R. G., & Ekdale, A. A. (1986). Composite ichnofabrics and tiering of burrows. Geological Magazine, 123(1), 59–65.

  11. Bromley, R. G., & Frey, R. (1974). Redescription of the trace fossil Gyrolithes and taxonomic evaluation of Thalassinoides, Ophiomorpha and Spongeliomorpha. Bulletin of the Geological Society of Denmark, 23(3-4), 311–335.

  12. Buatois, L., Wisshak, M., Wilson, M. A., & Mángano, G. (2017). Categories of architectural designs in trace fossils: a measure of ichnodisparity. Earth-Science Reviews, 164, 102–181.

  13. Carvalho, C. N. D., Viegas, P. A., & Cachão, M. (2007). Thalassinoides and its producer: populations of Mecochirus buried within their burrow systems, Boca do Chapim Formation (Lower Cretaceous), Portugal. Palaios, 22(1), 104–109.

  14. Catuneanu, O. (2002). Sequence stratigraphy of clastic systems: concepts, merits, and pitfalls. Journal of African Earth Sciences, 35(1), 1–43.

  15. Catuneanu, O., Galloway, W. E., Kendall, C. G. S. C., Miall, A. D., Posamentier, H. W., Strasser, A., & Tucker, M. E. (2011). Sequence stratigraphy: methodology and nomenclature. Newsletters on Stratigraphy, 44(3), 73–245.

  16. Chan, M. A., Beitler, B., Parry, W., Ormö, J., & Komatsu, G. (2004). A possible terrestrial analogue for haematite concretions on Mars. Nature, 429(6993), 731–734.

  17. Coleman, M. (1993). Microbial processes: controls on the shape and composition of carbonate concretions. Marine Geology, 113(1), 127–140.

  18. D’Alessandro, A., & Bromley, R. G. (1987). Meniscate trace fossils and the Muensteria-Taenidium problem. Palaeontology, 30(4), 743–763.

  19. D’Alessandro, A., & Bromley, R. G. (1995). A new ichnospecies of Spongeliomorpha from the Pleistocene of Sicily. Journal of Paleontology, 69(2), 393–398.

  20. Dayczak-Calikowska, K., & Moryc, W. (1988). Evolution of sedimentary basin and palaeotectonics of the Middle Jurassic in Poland (in Polish with English summary). Kwartalnik Geologiczny, 32(1), 117–136.

  21. De Gibert, J., Mas, G., & Ekdale, A. (2012). Architectural complexity of marine crustacean burrows: unusual helical trace fossils from the Miocene of Mallorca, Spain. Lethaia, 45(4), 574–585.

  22. Deczkowski, Z. (1960). Charakterystyka doggeru czestochowsko-wieluńskiego. Przegląd Geologiczny, 8(8), 412–417.

  23. Duke, W. L. (1985). Hummocky cross-stratification, tropical hurricanes, and intense winter storms. Sedimentology, 32(2), 167–194.

  24. Elliott, T. (1986). Siliciclastic shorelines. In H. Reading (Ed.), Sedimentary environments and facies (pp. 155–188). Oxford: Blackwell Scientific Publications.

  25. Feldman-Olszewska, A. (1997). Depositional architecture of the Polish epicontinental Middle Jurassic basin. Geological Quarterly, 41(4), 491–508.

  26. Folk, R. L., Andrews, P. B., & Lewis, D. (1970). Detrital sedimentary rock classification and nomenclature for use in New Zealand. New Zealand Journal of Geology and Geophysics, 13(4), 937–968.

  27. Frey, R. W., & Pemberton, S. G. (1984). Trace fossil facies models. In R. G. Walker (Ed.), Facies Models (pp. 189–207). Toronto: Geoscience Canada.

  28. Fürsich, F. (1979). Genesis, environments, and ecology of Jurassic hardgrounds. Neues Jahrbuch für Geologie und Paläontologie, 158, 1–63.

  29. Fürsich, F., Oschmann, W., Singh, I. B., & Jaitly, A. (1992). Hardgrounds, reworked concretion levels and condensed horizons in the Jurassic of western India: their significance for basin analysis. Journal of the Geological Society, 149(3), 313–331.

  30. Gedl, P., Kaim, A., Leonowicz, P., Boczarowski, A., Dudek, T., Kędzierski, M., Rees, J., Smoleń, J., Szczepanik, P., Sztajner, P., Witkowska, M., & Ziaja, J. (2012). Palaeoenvironmental reconstruction of Bathonian (Middle Jurassic) ore-bearing clays at Gnaszyn, Kraków-Silesia Homocline, Poland. Acta Geologica Polonica, 62, 463–484.

  31. Gingras, M. K., Baniak, G., Gordon, J., Hovikoski, J., Konhauser, K. O., Croix, A. L., Lemiski, R., Mendoza, C., Pemberton, S. G., Polo, C., & Zonneveld, J. P. (2012). Porosity and permeability in bioturbated sediments. In D. Knaust & R. G. Bromley (Eds.), Trace Fossils as Indicators of Sedimentary Environments, Developments in Sedimentology (pp. 837–868). Amsterdam: Elsevier.

  32. Gross, T., Williams III, A. J., & Grant, W. (1986). Long-term in situ calculations of kinetic energy and Reynolds stress in a deep sea boundary layer. Journal of Geophysical Research, Oceans, 91(C7), 8461–8469.

  33. Gross, T. F., Williams III, A., & Newell, A. (1988). A deep-sea sediment transport storm. Nature, 331(6156), 518–521.

  34. Gunatilaka, A., Al-Zamel, A., Shearman, D., & Reda, A. (1987). A spherulitic fabric in selectively dolomitized siliciclastic crustacean burrows, northern Kuwait. Journal of Sedimentary Research, 57(5), 922–927.

  35. Hallam, A. (1988). A reevaluation of Jurassic eustasy in the light of new data and the revised exxon curve. In C. K. Wilgus, B. S. Hastings, C. G. S. C. Kendall, H. W. Posamentier, C. A. Ross, & J. C. Van Wagoner (Eds.), Sea-Level Changes: An Integrated Approach (pp. 261–274). SEPM Society for Sedimentary Geology, 42.

  36. Haq, B., Hardenbol, J., & Vail, P. (1987). Chronology of fluctuating sea levels since the Triassic. Science, 235(4793), 1156–1167.

  37. Hesselbo, S. P., & Palmer, T. J. (1992). Reworked early diagenetic concretions and the bioerosional origin of a regional discontinuity within British Jurassic marine mudstones. Sedimentology, 39(6), 1045–1065.

  38. Jensen, S. (1997). Trace fossils from the Lower Cambrian Mickwitzia sandstone, south-central Sweden. Fossils and Strata, 42, 1–111.

  39. Kaźmierczak, J. (1974). Crustacean associated hiatus concretions and eogenetic cementation in the Upper Jurassic of central Poland. Neues Jahrbuch für Geologie und Paläontologie, 147, 329–342.

  40. Kelly, S., & Bromley, R. (1984). Ichnological, nomenclature of clavate borings. Palaeontology, 27(4), 793–807.

  41. Kennedy, W., & Klinger, H. C. (1972). Hiatus concretions and hardground horizons in the Cretaceous of Zululand (South Africa). Palaeontology, 15(Part 4), 539–549.

  42. Kinoshita, K., Wada, M., Kogure, K., & Furota, T. (2007). Microbial activity and accumulation of organic matter in the burrow of the mud shrimp, Upogebia major (Crustacea: Thalassinidea). Marine Biology, 153, 277–283.

  43. Leonowicz, P. (2013). The significance of mudstone fabric combined with palaeoecological evidence in determining sedimentary processes – an example from the Middle Jurassic of southern Poland. Geological Quarterly, 57(2), 243–260.

  44. Leonowicz, P. (2015). Storm-influenced deposition and cyclicity in a shallow-marine mudstone succession – example from the Middle Jurassic ore-bearing clays of the Polish Jura (southern Poland). Geological Quarterly, 59(2), 325–344.

  45. Leonowicz, P. (2016). Tubular tempestites from Jurassic mudstones of southern Poland. Geological Quarterly, 60(2), 385–394.

  46. MacEachern, J. A., Gingras, M. K., Bann, K., Dafoe, L. T., & Pemberton, S. G. (2007). Applications of ichnology to high-resolution genetic stratigraphic paradigms. Applied Ichnology, SEPM Society for Sedimentary Geology, 52, 95–129.

  47. Majewski, W. (2000). Middle Jurassic concretions from Czestochowa (Poland) as indicators of sedimentation rates. Acta Geologica Polonica, 50(4), 431–439.

  48. Marynowski, L., Zatoń, M., Simoneit, B. R. T., Otto, A., Jędrysek, M. O., Grelowski, C., & Kurkiewicz, S. (2007). Compositions, sources and depositional environments of organic matter from the Middle Jurassic clays of Poland. Applied Geochemistry, 22, 2456–2485.

  49. Matyja, B. A., & Wierzbowski, A. (2000). Ammonites and stratigraphy of the uppermost Bajocian and Lower Bathonian between Częstochowa and Wieluń, Central Poland. Acta Geologica Polonica, 50(2), 191–209.

  50. Palanques, A., Puig, P., Guillén, J., Jiménez, J., Gracia, V., Sánchez-Arcilla, A., & Madsen, O. (2002). Near-bottom suspended sediment fluxes on the microtidal low-energy Ebro continental shelf (NW Mediterranean). Continental Shelf Research, 22(2), 285–303.

  51. Papaspyrou, S., Gregersen, T., Cox, R., Thessalou-Legaki, M., & Kristensen, E. (2005). Sediment properties and bacterial community in burrows of the ghost shrimp Pestarella tyrrhena (Decapoda: Thalassinidea). Aquatic Microbial Ecology, 38, 181–190.

  52. Pemberton, S. G., & Gingras, M. K. (2005). Classification and characterizations of biogenically enhanced permeability. AAPG Bulletin, 89(11), 1493–1517.

  53. Sherwood, C., Butman, B., Cacchione, D., Drake, D., Gross, T., Sternberg, R., Wiberg, P., & Williams, A. (1994). Sediment-transport events on the northern California continental shelf during the 1990–1991 STRESS experiment. Continental Shelf Research, 14(10), 1063–1099.

  54. Szczepanik, P., Witkowska, M., & Sawłowicz, Z. (2007). Geochemistry of Middle Jurassic mudstones (Kraków-Częstochowa area, southern Poland): interpretation of the depositional redox conditions. Geological Quarterly, 51(1), 57–56.

  55. Tchoumatchenco, P., & Uchman, A. (2001). The oldest deep-sea Ophiomorpha and Scolicia and associated trace fossils from the Upper Jurassic – Lower Cretaceous deep-water turbidite deposits of SW Bulgaria. Palaeogeo-graphy, Palaeoclimatology, Palaeo-ecology, 169, 85–99.

  56. Uchman, A. (2009). The Ophiomorpha rudis ichnosubfacies of the Nereites ichnofacies: characteristics and constraints. Palaeogeography, Palaeoclimatology, Palaeoecology, 276(1), 107–119.

  57. Voigt, E. (1968). Uber-Hiatus-Konkretion (dargestellt an Beispielen aus dem Lias). Geologische Rundschau, 58, 281–296.

  58. Wanless, H. R., Tedesco, L. P., & Tyrrell, K. M. (1988). Production of subtidal tubular and surficial tempestites by hurricane Kate, Caicos Platform, British West Indies. Journal of Sedimentary Research, 58(4), 739–750.

  59. Wetzel, A., & Aigner, T. (1986). Stratigraphic completeness: tiered trace fossils provide a measuring stick. Geology, 14(3), 234–237.

  60. Wetzel, A., & Allia, V. (2000). The significance of hiatus beds in shallow-water mudstones: an example from the Middle Jurassic of Switzerland. Journal of Sedimentary Research, 70, 170–180.

  61. Wilson, M. (1985). Disturbance and ecologic succession in an upper Ordovician cobble-dwelling hardground fauna. Science, 228(4699), 575–577.

  62. Wilson, M. A. (1987). Ecological dynamics on pebbles, cobbles, and boulders. Palaios, 2(6), 594–599.

  63. Wilson, M. A., Zatoń, M., & Avni, Y. (2012). Origin, palaeoecology and stratigraphic significance of bored and encrusted concretions from the Upper Cretaceous (Santonian) of southern Israel. Palaeobiodiversity and Palaeoenvironments, 92(3), 343–352.

  64. Yanin, B. T., & Baraboshkin, E. Y. (2013). Thalassinoides burrows (Decapoda dwelling structures) in lower cretaceous sections of southwestern and central Crimea. Stratigraphy and Geological Correlation, 21(3), 280–290.

  65. Zatoń, M. (2010). Hiatus concretions. Geology Today, 26(5), 186–189.

  66. Zatoń, M., Marynowski, L., & Bzowska, G. (2006). Konkrecje hiatusowe z iłów rudonośnych Wyżyny Krakowsko-Czestochowskiej. Przegląd Geologiczny, 54(2), 131–138.

  67. Zatoń, M., Marynowski, L., Szczepanik, P., Bond, D. P. G., & Wignall, P. B. (2009). Redox conditions during sedimentation of the Middle Jurassic (upper Bajocian–Bathonian) clays of the Polish Jura (south-central Poland). Facies, 55(1), 103–114.

  68. Zatoń, M., Machocka, S., Wilson, M., Marynowski, L., & Taylor, P. (2011). Origin and paleoecology of Middle Jurassic hiatus concretions from Poland. Facies, 57, 275–300.

  69. Zatoń, M., Kremer, B., Marynowski, L., Wilson, M. A., & Krawczyński, W. (2012). Middle Jurassic (Bathonian) encrusted oncoids from the Polish Jura, southern Poland. Facies, 58(1), 57–77.

Download references

Acknowledgements

We are thankful to the reviewers of our paper: Olev Vinn (University of Tartu), Carlton Brett (University of Cincinnati), and Mark Wilson (The College of Wooster). Their valuable comments and remarks helped us to improve the manuscript significantly.

Funding

The authors thank the University of Silesia in Katowice (Poland) for financial and logistic support.

Author information

Correspondence to Grzegorz Sadlok.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sadlok, G., Zatoń, M. Ichnology of the Middle Jurassic hiatus concretions from Poland: implications for their formation, exhumation, and palaeoenvironment. Palaeobio Palaeoenv (2020). https://doi.org/10.1007/s12549-019-00410-6

Download citation

Keywords

  • Hiatus concretions
  • Ichnology
  • Bioerosion pattern
  • Middle Jurassic
  • Poland