Depositional environments and landscapes of the upper Miocene Ipururo Formation at Shumanza, Subandean Zone, northern Peru

  • Augustin Feussom Tcheumeleu
  • Séverine Fauquette
  • Angélica Aliaga Castillo
  • Camila Martinez
  • Federico Moreno
  • Rosa E. Navarrete
  • Francisco Parra
  • Frank P. Wesselingh
  • Rodolfo Salas-Gismondi
  • Rafael Varas-Malca
  • Martin Roddaz
  • Pierre-Olivier AntoineEmail author
Original Paper


During the late Miocene, the Andean–Amazonian region experienced drastic climatic and environmental changes, notably due to a major phase in the Andean uplift. The fossil record is virtually undocumented for this period in the Subandean Zone, where very few palaeoenvironmental and palaeontological investigations have been undertaken. Here, we describe plant remains (pollen, spores, and leaves), microfossils, mollusks, and vertebrates from the Ipururo Formation at Shumanza, San Martín, Peru. Twenty-nine plant families are identified from 164 pollen grains and 89 spores, among them Lycophytes, Monilophytes, and angiosperms (5 monocots and 18 eudicots). The pollen sample notably includes Grimsdalea magnaclavata, Palaeosantalaceaepites cingulatus, Echitricolporites spinosus, and Fenestrites longispinosus, pointing to a late Miocene–early Pliocene age for the TAR-27 locality (10.06–3.72 Ma). Leaf impressions, from nearby localities in the same section, document Malvaciphyllum sp. (Malvaceae), three morphs resembling Caryocaraceae, Fabaceae, Myrtaceae, and two unidentified ‘Dicotyledonae’ angiosperms. The mollusk assemblage is somewhat reminiscent of early–middle Miocene Pebasian faunas and dominated by gastropods (ampullariids, cochliopid, cerithioid, and planorbids). It also includes sphaeriid and unionoid bivalves. Vertebrate recovery is very poor, with a serrasalmine characiform and unidentified actinopterygian teeth. Fossil assemblages and sedimentary facies consistently testify to the dominance of riverine/alluvial forests and the persistence of a steady lowland rainforest close to the Andes less than 10.1 million years ago, without indication of (1) mangrove/marine environments or (2) high-elevation ranges in the close surroundings of Shumanza by that time. By coupling palynostratigraphy and lithostratigraphy, Shumanza fossil assemblages would be further assigned an early late Miocene age (10.1–ca. 8 Ma).


Pebas mega-wetland system Proto-Amazonia Neotropical rainforest Palynomorphs Leaf impressions Mollusks 



We deeply thank Marie-Pierre Ledru (ISEM, Montpellier) and Carina Hoorn (University of Amsterdam) for their invaluable help to identify the palynomorphs. We especially thank Laurent Marivaux, Myriam Boivin (ISEM), François Pujos (IANIGLA-CONICET, Mendoza), and especially Patrice Baby (GET, Toulouse) for their assistance in the field. Fieldwork was funded by the National Geographic Society and by French Connection Films, under an agreement between the Museo de Historia Natural de la Universidad Nacional de San Marcos, Lima, and the ISEM–University of Montpellier, France. This work was further funded by COOPINTEER CNRS/CONICET and ECOS-SUD/FONCyT international collaboration programs and through an “Investissements d’Avenir” grant managed by the “Agence Nationale de la Recherche” (CEBA, ANR-10-LABX-0025-01). A.F.T. was granted by the CEBA for his stay in the Institute for Biodiversity and Ecosystem Dynamics, Amsterdam University. C.M. acknowledges Harold E. Moore Jr. Memorial and Endowment Funds from Cornell University, and the doctoral fellowship of Fulbright-Colciencias. We warmly thank M. di Pasquo, D. Kadolsky, and a third anonymous referee who greatly helped us to improve previous versions of the manuscript. This is ISEM publication no. 2019-176 SUD.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or living animals performed by any of the authors.


  1. Antoine, P.-O., Abello, M. A., Adnet, S., Sierra, A. J. A., Baby, P., Billet, G., Boivin, M., Calderón, Y., Candela, A., Chabain, J., Corfu, F., Croft, D. A., Ganerød, M., Jaramillo, C., Klaus, S., Marivaux, L., Navarrete, R. E., Orliac, M. J., Parra, F., Pérez, M. E., Pujos, F., Rage, J.-C., Ravel, A., Robinet, C., Roddaz, M., Tejada-Lara, J. V., Vélez-Juarbe, J., Wesselingh, F. P., & Salas-Gismondi, R. (2016). A 60-million-year Cenozoic history of western Amazonian ecosystems in Contamana, eastern Peru. Gondwana Research, 31, 30–59.CrossRefGoogle Scholar
  2. Antoine, P.-O., Salas-Gismondi, R., Pujos, F., Ganerød, M., & Marivaux, L. (2017). Western Amazonia as a hotspot of mammalian biodiversity throughout the Cenozoic. Journal of Mammalian Evolution, 24, 5–17.CrossRefGoogle Scholar
  3. Armijo, R., Lacassin, R., Coudurier-Curveur, A., & Carrizo, D. (2015). Coupled tectonic evolution of Andean orogeny and global climate. Earth-Science Reviews, 143, 1–35.CrossRefGoogle Scholar
  4. Barreto, C. F., Neto, J. A. B., Vilela, C. G., & Barth, O. M. (2015). Palynological studies of Late Holocene Jurujuba sound sediments (Guanabara Bay), Rio de Janeiro, Southeast Brazil. Catena, 126, 20–27.CrossRefGoogle Scholar
  5. Batten, D. J. & Grenfell, H. R. (1996). Botryococcus. In J. Jansonius & D.C. McGregor (Eds.), Palynology: principles and applications (pp. 205–214), American Association of Stratigraphic Palynologists Foundation, 1.Google Scholar
  6. Bershaw, J., Garzione, C. N., Higgins, P., MacFadden, B., Anaya, F., & Alvarenga, H. (2010). Spatial–temporal changes in Andean plateau climate and elevation from stable isotopes of mammal teeth. Earth and Planetary Science Letters, 289, 530–538.CrossRefGoogle Scholar
  7. Boonstra, M., Ramos, M. I. F., Lammertsma, E. I., Antoine, P.-O., & Hoorn, C. (2015). Marine connections of Amazonia: Evidence from foraminifera and dinoflagellate cysts (early to middle Miocene, Colombia/Peru). Palaeogeography, Palaeoclimatology, Palaeoecology, 417, 176–194.CrossRefGoogle Scholar
  8. Campbell, K. E., Heizler, M., Frailey, C. D., Romero-Pittman, L., & Prothero, D. R. (2001). Upper Cenozoic chronostratigraphy of the southwestern Amazon Basin. Geology, 29, 595–598.CrossRefGoogle Scholar
  9. Carvalho, M. R., Herrera, F. A., Jaramillo, C. A., Wing, S. L., & Callejas, R. (2011). Paleocene Malvaceae from northern South America and their biogeographical implications. American Journal of Botany, 98, 1337–1355.CrossRefGoogle Scholar
  10. Cole, T. C. H., Bachelier, J. B., & Hilger, H. H. (2018). Tracheophytes phylogeny poster. Vascular plants: Systematics and characteristics. PeerJ Preprints, 7, e2614v3. Scholar
  11. Cole, T. C. H., Hilger, H. H., & Stevens, P. F. (2019). Angiosperm phylogeny poster. Flowering plant systematics. PeerJ Preprints, 7, e2320v5. Scholar
  12. Colinvaux, P. A., De Oliveira, P. E., & Moreno Patiño, J. E. M. (1999). Amazon Pollen Manual and Atlas-Manual e Atlas Palinológico da Amazônia (322 p). Amsterdam: Harwood Academic Publishers.Google Scholar
  13. D’Apolito, C. (2016). Landscape evolution in western Amazonia: Palynostratigraphy, palaeoenvironments and diversity of the Miocene Solimões Formation, Brazil. Unpublished PhD thesis, Univ. Birmingham, UK, 365 p.Google Scholar
  14. da Silva-Caminha, S. A., Jaramillo, C. A., & Absy, M. L. (2010). Neogene palynology of the Solimões basin, Brazilian Amazonia. Palaeontographica Abteilung B, 284, 13–79.CrossRefGoogle Scholar
  15. Ellis, B., Daly, D. C., Hickey, L. J., Mitchell, J. V., Johnson, K. R., Wilf, P., & Wing, S. L. (2009). Manual of leaf architecture. Ithaca, NY: Cornell University Press.Google Scholar
  16. Eude, A., Roddaz, M., Brichau, S., Brusset, S., Calderon, Y., Baby, P., & Soula, J.-C. (2015). Controls on timing of exhumation and deformation in the northern Peruvian eastern Andean wedge as inferred from low-temperature thermochronology and balanced cross section. Tectonics, 34, 715–730.CrossRefGoogle Scholar
  17. Figueiredo, J., Hoorn, C., van der Ven, P., & Soares, E. (2009). Late Miocene onset of the Amazon River and the Amazon deep-sea fan: Evidence from the Foz do Amazonas Basin. Geology, 37, 619–622.CrossRefGoogle Scholar
  18. Goillot, C. (2010). Biochronologie (vertébrés, pollen) et paléogéographie du bassin amazonien occidental au Miocène moyen. Unpublished PhD thesis, Univ. Toulouse, France, 250 p..Google Scholar
  19. Gorini, C., Haq, B. U., dos Reis, A. T., Silva, C. G., Cruz, A., Soares, E., & Grangeon, D. (2014). Late Neogene sequence stratigraphic evolution of the Foz do Amazonas Basin, Brazil. Terra Nova, 26, 179–185.CrossRefGoogle Scholar
  20. Graham, A. (2009). The Andes: A geological overview from a biological perspective. Annals of the Missouri Botanical Garden, 96(3), 371–385.CrossRefGoogle Scholar
  21. Graham, A., Gregory-Wodzicki, K. M., & Wright, K. L. (2001). Studies in Neotropical Paleobotany. XV. A Mio-Pliocene palynoflora from the Eastern Cordillera, Bolivia: Implications for the uplift history of the Central Andes. American Journal of Botany, 88(9), 1545–1557.CrossRefGoogle Scholar
  22. Guy-Ohlson, D. (1992). Botryococcus as an aid in the interpretation of palaeoenvironment and depositional processes. Review of Paleobotany and Palynology, 71, 1–15.CrossRefGoogle Scholar
  23. Hammen, T. Van Der, & Hooghiemstra, H. (2000). Neogene and Quaternary history of vegetation, climate, and plant diversity in Amazonia. Quaternary Science Reviews, 19, 725–742.Google Scholar
  24. Hermoza, W., Brusset, S., Baby, P., Gil, W., Roddaz, M., Guerrero, N., & Bolaños, R. (2005). The Huallaga foreland basin evolution: Thrust propagation in a deltaic environment, northern Peruvian Andes. Journal of South American Earth Sciences, 19, 21–34.CrossRefGoogle Scholar
  25. Herrera, L. F., & Urrego, L. E. (1996). Atlas de polen de plantas útiles y cultivadas de la Amazonia colombiana (pollen atlas of useful and cultivated plants in the Colombian Amazon region). In Estudios en la Amazonia Colombiana, 11 (462 p). Bogotá: Tropenbos-Colombia.Google Scholar
  26. Hilgen, F. J., Lourens, L. J., & Van Dam, J. A. (2012). The Neogene period. In F. Gradstein, J. Ogg, M. Schmitz, & G. Ogg (Eds.), The geologic time scale 2012 (pp. 923–978). Boston: Elsevier.CrossRefGoogle Scholar
  27. Hooghiemstra, H. (1984). Vegetation and climatic history of the high plain of Bogota, Colombia: A continuous record of the last 3.5 million years. J. Cramer hardcover—A squared books (Don Dewhirst). Dissertationes Botanicae, 79, 368 p.Google Scholar
  28. Hoorn, C. (1993). Marine incursions and the influence of Andean tectonics on the Miocene depositional history of northwestern Amazonia: Results of a palynostratigraphic study. Palaeogeography, Palaeoclimatology, Palaeoecology, 105, 267–309.CrossRefGoogle Scholar
  29. Hoorn, M. C. (1994a). Miocene palynostratigraphy and palaeo-environments of northwestern Amazonia: Evidence for marine incursions and the influence of Andean tectonics. Unpublished PhD thesis in Palynology and Paleo/Actuo-ecology, University of Amsterdam, Amsterdam, 156 p.Google Scholar
  30. Hoorn, C. (1994b). An environmental reconstruction of the palaeo-Amazon river system (Middle–Late Miocene, NW Amazonia). Palaeogeography, Palaeoclimatology, Palaeoecology, 112, 187–238.CrossRefGoogle Scholar
  31. Hoorn, C. (2006). Mangrove forests and marine incursions in Neogene Amazonia (lower Apaporis River, Colombia). Palaios, 21, 197–209.CrossRefGoogle Scholar
  32. Hoorn, C., Wesselingh, F. P., ter Steege, H., Bermudez, M. A., Mora, A., Sevink, J., Sanmartín, I., Sánchez-Méseguer, A., Anderson, C. L., Figueiredo, J. P., Jaramillo, C., Riff, D., Negri, F. R., Hooghiemstra, H., Lundberg, J., Stadler, T., Särkinen, T., & Antonelli, A. (2010). Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science, 330, 927–931.CrossRefGoogle Scholar
  33. Hoorn, C., Bogotá-A, G. R., Romero-Baez, M., Lammertsma, E. I., Flantua, S. G. A., Dantas, E. L., Dino, R., & do Carmo, D.A., & Chemale, F. Jr. (2017). The Amazon at sea: Onset and stages of the Amazon River from a marine record, with special reference to Neogene plant turnover in the drainage basin. Global and Planetary Change, 153, 51–65.Google Scholar
  34. Horton, B. K. (2018). Sedimentary record of Andean mountain building. Earth-Science Reviews, 178, 279–309.CrossRefGoogle Scholar
  35. Hulka, C., & Heubeck, C. (2010). Composition and provenance history of late Cenozoic sediments in southeastern Bolivia: Implications for Chaco Foreland Basin evolution and Andean uplift. Journal of Sedimentary Research, 80, 288–299.CrossRefGoogle Scholar
  36. Jaramillo, C.A. & Rueda, M. (2016). A morphological electronic database of Cretaceous–Tertiary fossil pollen and spores from northern South America. Colombian Petroleum Institute & Smithsonian Tropical Research. Available at:
  37. Jaramillo, C., Hoorn, C., Silva, S. A. F., Leite, F., Herrera, F., Quiroz, L., Dino, R., & Antonioli, L. (2010). The origin of the modern Amazon rainforest: Implications of the palynological and palaeobotanical record. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonian landscape and species evolution: A look into the past (pp. 317–334). Hoboken: Wiley-Blackwell Publishing.Google Scholar
  38. Jaramillo, C. A., Rueda, M., & Torres, V. (2011). A palynological zonation for the Cenozoic of the llanos and llanos foothills of Colombia. Palynology, 35, 46–84.CrossRefGoogle Scholar
  39. Jaramillo, C., Romero, I., Bayona, G., Duarte, E., Louwye, S., Escobar, J., Luque, J., Zapata, V., Mora, A., Schouten, S., Zavada, M., Harrington, G., Ortiz, J., & Wesselingh, F. P. (2017). Miocene flooding events of western Amazonia. Science Advances, 3, 1–12.Google Scholar
  40. Kar, N., Garzione, C. N., Jaramillo, C., Shanahan, T., Carlotto, V., Pullen, A., Moreno, F., Anderson, V., Moreno, E., & Eiler, J. (2016). Rapid regional surface uplift of the northern Altiplano plateau revealed by multiproxy paleoclimate reconstruction. Earth and Planetary Science Letters, 447, 33–47.CrossRefGoogle Scholar
  41. Latrubesse, E. M., Cozzuol, M., da Silva-Caminha, S. A., Rigsby, C. A., Absy, M. L., & Jaramillo, C. (2010). The Late Miocene paleogeography of the Amazon Basin and the evolution of the Amazon River system. Earth-Science Reviews, 99, 99–124.CrossRefGoogle Scholar
  42. Leite, F.P.R. (2009). Palinogia da formação Solimões, neógeno da Bacia do Solimões, Estado do Amazonas, Brasil: implicações paleoambientais e bioestratigráficas. Unpublished thesis. 128 p.
  43. Lorente, M. (1986). Palynology and palynofacies of the Upper Tertiary in Venezuela (222 p). Berlin: J. Cramer.Google Scholar
  44. Lundberg, J. G., Sabaj Pérez, M. H., Dahdul, W. M., & Aguilera, O. A. (2010). The Amazonian Neogene fish fauna. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonian landscape and species evolution: A look into the past (pp. 281–301). Hoboken: Wiley-Blackwell Publishing.Google Scholar
  45. Marchant, R., Almeida, L., Behling, H., Berrio, J. C., Bush, M., Cleef, A., Duivenvoorden, J., Kapelle, M., De Oliveira, P., Teixeira de Oliveira-Filho, A., Lozano-Garcia, S., Hooghiemstra, H., Ledru, M.-P., Ludlow-Wiechers, B., Markgraf, V., Mancini, V., Paez, M., Prieto, A., Rangel, O., & Salgado-Labouriau, M. L. (2002). Distribution and ecology of parent taxa of pollen lodged within the Latin American pollen database. Review of Palaeobotany and Palynology, 121, 1–75.CrossRefGoogle Scholar
  46. Medeanic, S. (2006). Freshwater algal palynomorph records from Holocene deposits in the coastal plain of Rio Grande do Sul, Brazil. Review of Palaeobotany and Palynology, 141, 83–101.CrossRefGoogle Scholar
  47. Mora, A., Baby, P., Roddaz, M., Parra, M., Brusset, S., Hermoza, W., & Espurt, N. (2010). Tectonic history of the Andes and Subandean zones: Implications for the development of the Amazon drainage basin. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonian landscape and species evolution: A look into the past (pp. 38–60). Hoboken: Wiley-Blackwell Publishing.Google Scholar
  48. Negri, F. R., Bocquentin-Villanueva, J., Frerigolo, J., & Antoine, P.-O. (2010). A review of Tertiary mammal faunas and birds from western Amazonia. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonian landscape and species evolution: A look into the past (pp. 245–258). Hoboken: Wiley-Blackwell Publishing.Google Scholar
  49. Paleosedes, 2015. Bioestratigrafía mediante palinología. Muestras de superficie, Tarapoto (Perú, Suramérica). Unpublished Report, REP-1008-16-01-2015, pp. 1–5.Google Scholar
  50. Peppe, D. J., Hickey, L. J., Miller, I. M., & Green, W. A. (2008). A morphotype catalogue, floristic analysis and stratigraphic description of the Aspen shale flora (Cretaceous–Albian) of southwestern Wyoming. Bulletin of the Peabody Museum of Natural History, 49, 181–208.CrossRefGoogle Scholar
  51. Punt, W., Hoen, P. P., Blackmore, S., Nilsson, S., & Le Thomas, A. (2007). Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology, 143, 1–81.CrossRefGoogle Scholar
  52. Räsänen, M. E., Linna, A. M., Santos, J. C. R., & Negri, F. R. (1995). Late Miocene tidal deposits in the Amazonian foreland basin. Science, 269, 386–390.CrossRefGoogle Scholar
  53. Ribeiro, A. M., Madden, R. H., Negri, F. R., Kerber, L., Hsiou, A. S., & Rodrigues, K. A. (2013). Mamíferos fósiles y biocronología en el suroeste de la Amazonia, Brasil. In D. Brandoni & J. I. Noriega (Eds.), El Neógeno de la Mesopotamia Argentina (Asociación Paleontológica Argentina, Publicación Especial) (Vol. 14, pp. 207–221).Google Scholar
  54. Riff, D., Romano, P. S. R., Oliveira, G. R., & Aguilera, O. A. (2010). Neogene crocodile and turtle fauna in northern South America. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonian landscape and species evolution: A look into the past (pp. 259–280). Hoboken: Wiley-Blackwell Publishing.Google Scholar
  55. Roddaz, M., Viers, J., Brusset, S., Baby, P., & Hérail, G. (2005). Sediment provenances and drainage evolution of the Neogene Amazonian foreland basin. Earth and Planetary Science Letters, 239, 57–78.CrossRefGoogle Scholar
  56. Roddaz, M., Hermoza, W., Mora, A., Baby, P., Parra, M., Christophoul, F., Brusset, S., & Wesselingh, F. P. (2010). Cenozoic sedimentary evolution of the Amazonian foreland basin system. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonian landscape and species evolution: A look into the past (pp. 361–388). Hoboken: Wiley-Blackwell Publishing.Google Scholar
  57. Roubik, D. W., & Moreno, P. (1991). Pollen and spores of Barro Colorado Island (Panama). Monographs in Systematic Botany, 36, 270 p.Google Scholar
  58. Salas-Gismondi, R., Flynn, J. J., Baby, P., Tejada-Lara, J. V., Wesselingh, F. P., & Antoine, P. O. (2015). A Miocene hyperdiverse crocodylian community reveals peculiar trophic dynamics in proto-Amazonian mega-wetlands. Proceedings of the Royal Society of London B: Biological Sciences, 282, 20142490.CrossRefGoogle Scholar
  59. Sánchez Fernández, A. W., & Herrera Tufino, I. (1998). Geología de los cuadrángulos de Moyobamba, Saposoa y Juanjui. Hojas 13-j, 14-j y 15-j. Boletín del Instituto Geológico, Minero y Metalúrgico del Perú, A-122, 1–269.Google Scholar
  60. Sánchez Izquierdo, J., Álvarez Cumpa, D., & Lagos Manrique, A. (1998). Geología de los cuadrángulos de Juscusbamba y Pólvora. Hojas 16-i y 16-j. Boletín del Instituto Geológico, Minero y Metalúrgico del Perú, A-119, 1–268.Google Scholar
  61. Soelen, E. E. Van, Kim, J.-H., Santos, R. V., Dantas, E. L., Vasconcelos de Almeida, F., Pires, J. P., Roddaz, M., & Sinninghe Damsté, J. S. (2017). A 30 ma history of the Amazon River inferred from terrigenous sediments and organic matter on the Ceará rise. Earth and Planetary Science Letters, 474, 40–48Google Scholar
  62. Suc, J.-P., Fauquette, S. & Popescu, S. M. (2004). L'investigation palynologique du Cénozoïque passe par les herbiers. In Actes du Colloque “Les herbiers: un outil d'avenir. Tradition et modernité”, Villeurbanne. Edit. Association française pour la Conservation des Espèces Végétales, Nancy (pp. 67–87).Google Scholar
  63. Teunissen van Manen, M. (2015a). Miocene Amazonian Palynological Diversity—Image files. figshare.
  64. Teunissen van Manen, M. (2015b). Miocene Amazonian palynological diversity database—Entries record. figshare.
  65. Wesselingh, F. P., & Ramos, M. I. F. (2010). Amazonian aquatic invertebrate faunas (Mollusca, Ostracoda) and their development over the past 30 million years. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonian landscape and species evolution: A look into the past (pp. 302–316). Hoboken, Wiley-Blackwell Publishing.Google Scholar
  66. Wesselingh, F. P., Hoorn, M. C., Guerrero, J., Räsänen, M., Romero Pittmann, L., & Salo, J. (2006). The stratigraphy and regional structure of Miocene deposits in western Amazonia (Peru, Colombia and Brazil), with implications for late Neogene landscape evolution. Scripta Geologica, 133, 291–322.Google Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Augustin Feussom Tcheumeleu
    • 1
    • 2
    • 3
  • Séverine Fauquette
    • 1
  • Angélica Aliaga Castillo
    • 4
    • 5
  • Camila Martinez
    • 4
    • 6
  • Federico Moreno
    • 4
    • 7
  • Rosa E. Navarrete
    • 8
  • Francisco Parra
    • 8
    • 9
  • Frank P. Wesselingh
    • 10
  • Rodolfo Salas-Gismondi
    • 5
  • Rafael Varas-Malca
    • 5
  • Martin Roddaz
    • 9
    • 11
  • Pierre-Olivier Antoine
    • 1
    Email author
  1. 1.Institut des Sciences de l’Evolution de Montpellier (ISEM), CNRSUniversité de Montpellier, IRD, EPHEMontpellierFrance
  2. 2.Laboratoire de Paléoécologie, Département de GéographieUniversité de MontréalMontréalCanada
  3. 3.Laboratoire Chrono-Environnement, UMR 6249, CNRSUniversité Bourgogne Franche-ComtéBesançon cedexFrance
  4. 4.Smithsonian Tropical Research InstituteBalboaPanama
  5. 5.Departamento de Paleontología de VertebradosMuseo de Historia Natural—Universidad Nacional Mayor de San MarcosLimaPeru
  6. 6.L.H. Bailey Hortorium, Plant Biology Section, School of Integrative Plant SciencesCornell UniversityIthacaUSA
  7. 7.Earth & Environmental SciencesUniversity of RochesterRochesterUSA
  8. 8.Paleosedes E.U. Tv 27 n°57-49 CampinBogotáColombia
  9. 9.Géosciences-Environnement ToulouseUniversité de Toulouse; UPS (SVT-OMP); CNRS; IRDToulouseFrance
  10. 10.Naturalis Biodiversity CenterLeidenNetherlands
  11. 11.Laboratório de Geocronologia, Instituto de GeociênciasUniversidade de BrasíliaBrasíliaBrazil

Personalised recommendations