Palaeobiodiversity and Palaeoenvironments

, Volume 99, Issue 3, pp 379–399 | Cite as

Middle Jurassic palaeoenvironment and palaeobiogeography of the Tabas Block, Central Iran: palynological and palaeobotanical investigations

  • Mohammad Taghi Badihagh
  • Freshteh SajjadiEmail author
  • Taghi Farmani
  • Dieter Uhl
Original Paper


We performed a palynological study on Jurassic successions of the Hojedk Formation, Central Iran. The sampled material was recovered from well no. 233, South Kuchak-Ali area belonging to the Tabas Block. The lithology comprises 475.80 m of green–grey shales and sandstones. Palynological assemblages were recovered including spores, pollen grains, dinoflagellate cysts, woody debris and amorphous organic matter (AOM). Furthermore, 22 taxa of plant macrofossils were identified. We analysed 48 samples which resulted in identification of 13 spore species (belonging to 11 genera) and three pollen species (from three genera) with fair preservation quality. Trilete spores dominate while pollen grains only represent 11.5% of the total particulate organic matter. Representatives of the fern spore Klukisporites are particularly abundant and the K. variegatus acme zone, which is of biostratigraphical importance, is identified in the host strata. The abundance of K. variegatus and K. scaberis suggests a Middle Jurassic (Bajocian–Bathonian?) age for the host strata. This age designation corroborates previous stratigraphic interpretations, mainly based on plant macrofossils for this formation. The palynomorphs indicate deposition in an oxygenated environment close to the shoreline in a deltaic system. The presence of subordinate marine palynomorphs (proximate dinoflagellate cysts) is probably indicative of intermittent sea level transgression. The affinity of the palynological assemblages from the Hojedk Formation indicates a diverse parental flora of, in descending quantitative order, ferns, bryophytes and gymnosperms, the latter mainly represented by conifers and ginkgophytes. Comparisons with modern plant ecology indicate accumulation of palynomorphs under a moist warm climate during the Middle Jurassic (Bajocian–Bathonian?) time. The comparison of parental plants with previous palaeofloristic studies indicates that the Tabas Block was located in the Mid-Asian part of the Indo-European floristic province of the Northern Hemisphere.


Palynology Palaeoenvironment Palaeobiogeography Middle Jurassic Miospore Tabas Block Central Iran 



We would like to express our thanks to Dr. M. S. Fakhr for his guidance and help in identification of our macroplant fossils. Also, it was an honour for us to have the guidance and consultancy of Dr. F. Hashemi Yazdi for this research. We would like to thank Dr. A. Dehbozorgi and National Iranian Steel Company for their cooperation in the field. This research was conducted under the public funds available to the University of Tehran. In addition, we thank Vivi Vajda and an anonymous reviewer for their comments that helped to improve the manuscript considerably.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abbink, O. A. (1998). Palynological investigations in the Jurassic of the North Sea region. Laboratory of Palaeobotany and Palynology, Contributions Series, 8, 192.Google Scholar
  2. Achilles, H., Kaiser, H., & Schweitzer, H. J. (1984). Die räto-jurassischen Floren des Iran und Afghanistans: 7. Die Mikroflora der obertriadisch-jurassischen Ablagerungen des Alborz-Gebirges (Nord-Iran). Palaeontographica Abteilung B, 14–95.Google Scholar
  3. Aghanabati, A. (1977). Etude géologique de la région de Kalmard (W. Tabas). Stratigraphie et tectonique. Geological Survey of Iran, Report, 35.Google Scholar
  4. Aghanabati, A. (1998). Jurassic stratigraphy of Iran, volumes 1 and 2. Tehran: Geological Survey of Iran. [in Persian].Google Scholar
  5. Ahmad, F., Farouk, S., & Ziko, A. (2014). Facies associations of the Bathonian Hamam Formation from northwestern Jordan. Arabian Journal of Geosciences, 7(11), 4861–4875.CrossRefGoogle Scholar
  6. Ainsworth, N. R., & Riley, L. A. (2010). Triassic to Middle Jurassic stratigraphy of the Kerr McGee 97/12-1 exploration well, offshore southern England. Marine and Petroleum Geology, 27, 853–894.CrossRefGoogle Scholar
  7. Alavi, M., Vaziri, H., Seyed-Emami, K., & Lasemi, Y. (1997). The Triassic and associated rocks of the Nakhlak and Aghdarband areas in central and northeastern Iran as remnants of the southern Turanian active continental margin. Geological Society of America Bulletin, 109(12), 1563–1575.CrossRefGoogle Scholar
  8. Ameri, H., Dastanpour, M., Khalilizade, H., & Zamani, F. (2014). Plant fossil remains from the Bajocian–Bathonian of Hojedk Formation, Babhutk area, Kerman, Iran. Arabian Journal of Geosciences, 7(6), 2293–2302.CrossRefGoogle Scholar
  9. Arjang, B. (1975). Die räto-jurassischen Floren des Iran und Afghanistans. 1. Die Mikroflora der räto-jurassischen Ablagerungen des Kermaner Beckens (Zentral-Iran). Palaeontographica Abteilung B, 85–148.Google Scholar
  10. Arvin, M., Pan, Y., Dargahi, S., Malekizadeh, A., & Babaei, A. (2007). Petrochemistry of the Siah-Kuh granitoid stock southwest of Kerman, Iran: implications for initiation of Neotethys subduction. Journal of Asian Earth Sciences, 30(3–4), 474–489.CrossRefGoogle Scholar
  11. Ashraf, A. R. (1977). Die räto-jurassischen Floren des Iran und Afghanistans. 3. Die Mikrofloren der rätischen bis unterkretazischen Ablagerungen Nordafghanistans. Palaeontographica Abteilung B, 1–97.Google Scholar
  12. Ashraf, A. R., Sun, G., Wang, X., Uhl, D., Li, C., & Mosbrugger, V. (1999). The Triassic-Jurassic boundary in the Junggar basin (NW-China)-preliminary palynostratigraphic results. Acta Palaeobotanica. Supplementum, 2, 85–91.Google Scholar
  13. Ashraf, A. R., Sun, Y., Sun, G., Uhl, D., Mosbrugger, V., Li, J., & Herrmann, M. (2010). Triassic and Jurassic palaeoclimate development in the Junggar Basin, Xinjiang, Northwest China—a review and additional lithological data. In  T. Martin, G. Sun & V. Mosbrugger (Eds.), Triassic-Jurassic biodiversity, ecosystems, and climate in the Junggar Basin, Xinjiang, Northwest China. Palaeobiodiversity and Palaeoenvironments, 90(3), 187–201.Google Scholar
  14. Backhouse, J. (1988). Late Jurassic and Early Cretaceous palynology of the Perth Basin, Western Australia (Vol. 135). State Print. Division.Google Scholar
  15. Balme, B. E. (1957). Spores and pollen grains from the Mesozoic of Western Australia. Commonwealth Scientific and Industrial Research Organization, Coal Research Section, 25, 1–48.Google Scholar
  16. Balme, B. E. (1964). The palynological record of Australian pre-Tertiary floras. B Geology Department, University of Western Australia.Google Scholar
  17. Balme, B. E. (1995). Fossil in situ spores and pollen grains: an annotated catalogue. Review of Palaeobotany and Palynology, 87(2–4), 81–323.CrossRefGoogle Scholar
  18. Barale, G., Iacobidze, E., Lebanidze, Z., & Philippe, M. (1991). Podocarpoxylon svanidzei n. sp. (Coniferae) du Bathonien de Tkibouli en Géorgie occidentale (URSS). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1991, 443–457.Google Scholar
  19. Barnard, P. D. (1967). Flora of the Shemshak Formation. Part 1. Liassic plants from Dorud. Rivista Italiana di Paleontologia e Stratigrafia, 71, 1123–1168.Google Scholar
  20. Batten, D. J. (1996). Upper Jurassic and Cretaceous miospores. Chapter 26A, Palynofacies and palaeoenvironmental interpretation. In J. Jansonius & D. C. McGregor (Eds.), Palynology: Principles and Application (vol. 3, pp. 1011–1064). American Association Stratigraphic Palynologists Foundation.Google Scholar
  21. Batten, D. J., & Stead, D. T. (2005). Palynofacies analysis and its stratigraphic application. In E. A. M. Koutsoukos (Ed.), Applied stratigraphy (pp. 203–226). Dordrecht: Springer.CrossRefGoogle Scholar
  22. Berberian, M., & King, G. C. P. (1981). Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18(2), 210–265.CrossRefGoogle Scholar
  23. Bharadwaj, D. C., & Kumar, P. (1986). Palynology of Jurassic sediments from Iran. I: Kerman area. Biological Memoirs, 12(2), 146–172.Google Scholar
  24. Bombardiere, L., & Gorin, G. E. (2000). Stratigraphical and lateral distribution of sedimentary organic matter in Upper Jurassic carbonates of SE France. Sedimentary Geology, 132(3–4), 177–203.CrossRefGoogle Scholar
  25. Bomfleur, B., & Kerp, H. (2010). The first record of the dipterid fern leaf Clathropteris Brongniart from Antarctica and its relation to Polyphacelus stormensis Yao, Taylor et Taylor nov. emend. Review of Palaeobotany and Palynology, 160(3–4), 143–153.CrossRefGoogle Scholar
  26. Choo, T., Escapa, I., & Benjamin, B. (2016). Monotypic colonies of Clathropteris meniscioides (Dipteridaceae) from the Early Jurassic of central Patagonia, Argentina: implications for taxonomy and palaeoecology. Palaeontographica. Abteilung B, Palaophytologie, 294, 85–109.CrossRefGoogle Scholar
  27. Couper, R. A. (1953). Upper Mesozoic and Cainozoic spores and pollen grains from New Zealand (Vol. 22). Alexander Doweld.Google Scholar
  28. Couper, R. A. (1958). British Mesozoic microspores and pollen grains, a systematic and stratigraphic study. Palaeontographica, Abteilung B, 103, 75–179.Google Scholar
  29. Dehbozorgi A. (2014). Palynology and palaeoecology of the Middle Jurassic (Dalichai and Baghamshah formations) east of Semnan (Jam area), PhD thesis. University of Tehran, Iran (unpublished).Google Scholar
  30. Dehbozorgi, A., Sajjadi, F., & Hashemi, H. (2013). Middle Jurassic palynomorphs of the Dalichai Formation, central Alborz Ranges, northeastern Iran: Paleoecological inferences. Science China Earth Sciences, 56(12), 2107–2115.CrossRefGoogle Scholar
  31. Delle, G. V. (1967). The Middle Jurassic flora of the Tkvarchelian Coal-Basin (Transcaucasia). Paleobotanika, 6, 53–132. [in Russian with English abstract].Google Scholar
  32. Dettmann, M. E. (1963). Upper Mesozoic microfloras from southeastern Australia. Proceedings of the Royal Society of Victoria, 77, 1–148.Google Scholar
  33. Fakhr, M.S., (1975). Contribution a l'étude de la flore Rhéto–Liasique de la formation de Shemshak de l'Elbourz (Iran). These Uni, Pierre et Marie Curie Paris 6; Publication du Laboratoire de Paleobotanique de l’Universite Paris 6, no.2; 421pp.Google Scholar
  34. Fakhr, M., & Marguerier, J. (1977). Prototaxoxylon feriziense nov. sp. bois fossile du Jurassique moyen de Lírán. Contribution alétude de la flore Rhèto-Liasique de la Formation Shemshak de LElbourz (Iran). Sciences naturelles, University of Paris.Google Scholar
  35. Filatoff, J. (1975). Jurassic palynology of the Perth basin, Western Australia. Palaeontographica Abteilung B, 1–113.Google Scholar
  36. Filatoff, J., & Price, P. L. (1988). A pteridacean spore lineage in the Australian Mesozoic. In P. A. Jell & G. Playford (Eds.), Palynological and palaeobotanical studies in honour of Basil E. Balme. Memoirs of the Association of Australasian Palaeontologists, 5, 89–124.Google Scholar
  37. Frenguelli, J. (1941). Las Camptopterídeas del Lias de Piedra Pintada en el Neuquén (Patagonia). Not. Mus. La Plata, 7. Paléo, 27, 27–57.Google Scholar
  38. Fürsich, F. T., Wilmsen, M., Seyed-Emami, K., Schairer, G., & Majidifard, M. R. (2003). Platform-basin transect of a Middle to Late Jurassic large-scale carbonate platform system (Shotori Mountains, Tabas area, east-Central Iran). Facies, 48(1), 171–198.CrossRefGoogle Scholar
  39. Fürsich, F. T., Hautmann, M., Senowbari- Daryan, B., & Seyed-Emami, K. (2005). The Upper Triassic Nayband and Darkuh Formations of east-central Iran: stratigraphy, facies patterns and biota of extensional basins on an accreted terrane. Beringeria, 35, 53–133.Google Scholar
  40. Fürsich, F. T., Wilmsen, M., Seyed-Emami, K., & Majidifard, M. R. (2009). The Mid-Cimmerian tectonic event (Bajocian) in the Alborz Mountains, Northern Iran: evidence of the break-up unconformity of the South Caspian Basin. Geological Society, London, Special Publications, 312(1), 189–203.CrossRefGoogle Scholar
  41. Genkina, R. Z. (1963). Fossil flora of the Mesozoic coal-bearing deposits of the East Ural-field of Orsk Coal Basin. 115 pp., 51 pis. Inst. Geol. Exploit. Foss. Fuel, Academy of Sciences USSR, Nauka, Moscow. [in Russian].Google Scholar
  42. Gomolitzky, N. P., & Khudayberdyev, R. H. (1976). About Middle Asian Jurassic flora. The Palaeobotanist, 25, 104–108.Google Scholar
  43. Gothan, W. (1905). Zur Anatomie lebender und fossiler Gymnospermen-Hölzer. Abhandlungen der Königlich Preußischen Geologischen Landesanstalt und Bergakademie, 44, 1–108.Google Scholar
  44. Hashemi-Yazdi, F. (2015). Palynology and palaeoecology of the Dalichai Formation in central - eastern Alborz Basin and the Hojedk Formation at the east -central Iran. PhD thesis. University of Tehran, Iran (unpublished).Google Scholar
  45. Hashemi-Yazdi, F., Sajjadi, F., & Hashemi, H. (2014). Miospores – based palynostratigraphy of the Hojedk Formation, Eshkeli, north of Kerman. Paleontology, 2(1), 111–127.Google Scholar
  46. Helby, R., Morgan, R., & Partridge, A. D. (1987). A palynological zonation of the Australian Mesozoic. In P. A. Jell (Ed.), Studies in Australian Mesozoic palynology. Association of Australasian Palaeontologists, Memoir, 4, 1–94.Google Scholar
  47. Herbst, R. (1966). Revisión de la flora Liásica de Piedra Pintada, provincia de Neuquén, Argentina. Rev. Mus. La Plata (N.S.). Sección Paleontologia, 5, 27–53.Google Scholar
  48. Ibrahim, M. I. A., Aboul Ela, N. M., & Kholeif, S. E. (2001). Palynostratigraphy of Jurassic to Lower Cretaceous sequences from the Eastern Desert of Egypt. Journal of African Earth Sciences, 32(2), 269–297.CrossRefGoogle Scholar
  49. Jacob, K., & Shukla, B. N. (1955). Jurassic plants from the Saighan series of northern Afghanistan and their paleoclimatic and paleogeographic significance. Memoirs of the Geological survey of India. Palaeontologia Indica, 33, 1–64.Google Scholar
  50. Jiang, D.X., Wang, Y.D., Robbins, E.I., Wei, J. & Tian, N. (2008). Mesozoic non-marine petroleum source rocks determined by palynomorphs in the Tarim Basin, Xinjiang, Northwestern China. Geological Magazine, 145 (6), 868–885.Google Scholar
  51. Kimyai, A. (1968). Jurassic plant microfossils from the Kerman region. Bulletin of the Iranian Petroleum Institute, 33, 91–111.Google Scholar
  52. Kimyai, A. (1975). Jurassic palynological assemblages from the Shahrud region, Iran. Geoscience and Man, 11, 117–121.CrossRefGoogle Scholar
  53. Kimyai, A. (1977). Further information on the palynological stratigraphy of the Mesozoic coaly sediments from Kerman, Iran. Iranian petroleum institute, Proceeding of the 2nd Geological Symposium of Iran, Tehran: 191–217. (in Persian).Google Scholar
  54. Mantle, D. J., & Riding, J. B. (2012). Palynology of the Middle Jurassic (Bajocian-Bathonian) Wanaea verrucosa dinoflagellate cyst zone of the North West Shelf of Australia. Review of Palaeobotany and Palynology, 180, 41–78.CrossRefGoogle Scholar
  55. McKellar, J. L. (1998). Late Early to Late Jurassic palynology, biostratigraphy and palaeogeography of the Roma Shelf area, northwestern Surat Basin, Queensland, Australia: including phytogeographic-palaeoclimatic implications of the Callialasporites dampieri and Microcachryidites microfloras in the Jurassic-Early Cretaceous of Australia, based on an overview assessed against a background of floral change and apparent true polar wander in the preceding late Palaeozoic-early Mesozoic. PhD thesis, School of Physical Sciences, The University of Queensland.Google Scholar
  56. Nadjafi, A. A. (1982). Contribution à la connaissance de la flore ligneuse du Jurassique d'Iran (Doctoral dissertation). (unpublished).Google Scholar
  57. Oboh-Ikuenobe, F. E. (1996). Correlating palynofacies assemblages with sequence stratigraphy in Upper Cretaceous (Campanian) sedimentary rocks of the Book Cliffs, east-Central Utah. Geological Society of America Bulletin, 108(10), 1275–1294.CrossRefGoogle Scholar
  58. Philippe, M., Puijalon, S., Suan, G., Mousset, S., Thévenard, F., & Mattioli, E. (2017). The palaeolatitudinal distribution of fossil wood genera as a proxy for European Jurassic terrestrial climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 466, 373–381.CrossRefGoogle Scholar
  59. Phipps, D., & Playford, G. (1984). Laboratory techniques for extraction of palynomorphs from sediments. Papers of the Department of Geology, University of Queensland, 11(1), 1–23.Google Scholar
  60. Poole, I., & Ataabadi, M. M. (2005). Conifer woods of the Middle Jurassic Hojedk Formation (Kerman basin) Central Iran. IAWA Journal, 26(4), 489–505.CrossRefGoogle Scholar
  61. Popa, M. E., Javidan, M., & Falahatgar, M. (2012). Klukia exilis (Philips 1829) Raciborski 1890 emend. Harris 1961 from Ahan Sar, Shemshak group, Iran. Acta Palaeontologica Romaniae, 8, 33–41.Google Scholar
  62. Potonié, R. (1962). Synopsis der Sporae in situ. Die Sporen der fossilen Fruktifikationen (Tallophyta bis Gymnospermophyta) im natürlichen System und im Vergleich mit den Sporae dispersae. Geologisches Jahrbuch, Beihefte, 52, 1–204.Google Scholar
  63. Potonié, R. (1967). New phylogenetic facts on fossil spores. Review of Palaeobotany and Palynology, 1(1–4), 75–82.CrossRefGoogle Scholar
  64. Quattrocchio, M. E., García, V., Martínez, M., & Zavala, C. (2001). A hypothetic scenario for the Middle Jurassic in the southern part of the Neuquén Basin, Argentina. 7° International symposium on Mesozoic terrestrial ecosystems, Asociación Paleontológica Argentina. Publicación Especial, 7, 163–166.Google Scholar
  65. Reiser, R. F., & Williams, A. J. (1969). Palynology of the Lower Jurassic sediments of the northern Surat Basin, Queensland. SG Reid, Government Printer.Google Scholar
  66. Regard, V., Faccenna, C., Bellier, O., & Martinod, J. (2008). Laboratory experiments of slab break-off and slab dip reversal: insight into the Alpine Oligocene reorganization. Terra Nova, 20(4), 267–273.CrossRefGoogle Scholar
  67. Rostovtseva, J. I. (2011). New palynological data about Middle Jurassic sediments in Northwest Moscow. Moscow University Geology Bulletin, 66(5), 348–353.CrossRefGoogle Scholar
  68. Sabbaghiyan H. (2009). Palynostratigraphy of the Dalichai Formation at Kuhe Rahband, south of Mahdishahr, Central Alborz, Iran. MSc. Thesis. University of Tehran, Iran (unpublished).Google Scholar
  69. Sajjadi, F., & Playford, G. (2002). Systematic and stratigraphic palynology of Late Jurassic - earliest Cretaceous strata of the Eromanga Basin, Queensland, Australia, part 2. Palaeontographica, Abteilung A, 261(4–6), 1–99.Google Scholar
  70. Sajjadi, F., Hashemi, H., & Dehbozorgi, A. (2007). Middle Jurassic palynomorphs of the Kashafrud formation, Koppeh Dagh Basin, Northeastern Iran. Micropaleontology, 53(5), 391–408.CrossRefGoogle Scholar
  71. Schiøler, P., Crampton, J. S., & Laird, M. G. (2002). Palynofacies and sea-level changes in the middle Coniacian–late Campanian (Late Cretaceous) of the East Coast Basin, New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology, 188(3–4), 101–125.CrossRefGoogle Scholar
  72. Schweitzer, H. J., & Kirchner, M. (1996). Die rhäto-jurassischen Floren des Iran und Afghanistans: 9. Coniferophyta. Palaeontographica, Abteilung B, 238(4–6), 77–139.Google Scholar
  73. Schweitzer, H. J., & Kirchner, M. (1998). Die rhäto-jurassischen Floren des Iran und Afghanistans.11. Pteridospermophyta und Cycadophyta I. Cycadales. Palaeontographica, Abteilung B, 248(1–3), 1–85.Google Scholar
  74. Seyed-Emami, K. (1971). The Jurassic Badamu Formation in the Kerman region, with some remarks on the Jurassic stratigraphy of Iran. Geological Survey of Iran, Report, 19, 1–80.Google Scholar
  75. Seyed-Emami, K., Fürsich, F. T., & Wilmsen, M. (2004). Documentation and significance of tectonic events in the northern Tabas Block (east-central Iran) during the Middle and Late Jurassic. Rivista Italiana di Paleontologia e Stratigrafia, 110(1), 163–171.Google Scholar
  76. Seyed-Emami, K., Fürisch, F. T., Wilmsen, M., Majidifard, M. R., & Skekarifard, A. (2008). Lower and Middle Jurassic ammonoids of the Shemshak Group in Alborz, Iran and their palaeobiogeographical and biostratigraphical importance. Acta Palaeontologica Polonica, 53(2), 237–260.CrossRefGoogle Scholar
  77. Sha, J., Olsen, P. E., Yanhong Pan, Y., Xu, D., Wang, Y., Zhang, X., & Vajda, V. (2015). Triassic-Jurassic climate in continental high-latitude Asia was dominated by obliquity-paced variations (Junggar Basin, Urumqi, China). PNAS, 112, 3624–3629.Google Scholar
  78. Sha, J., Vajda, V., Pan, Y., Larsson, L., Wang, Y., Cheng, X. J., Deng, S., Yao, X., Chen, S., Zhang, X., & Peng, B. (2011). The stratigraphy of the Triassic−Jurassic boundary successions of the southern margin of Junggar Basin, northwestern China. Acta Geolologia Sinica, 85, 421–436.CrossRefGoogle Scholar
  79. Shevchuk, O., Slater, S. M., & Vajda, V. (2018). Palynology of Jurassic (Bathonian) sediments from Donbas, Northeast Ukraine. In S. M. Slater, E. Kustatscher & V. Vajda, (Eds.), Jurassic biodiversity and terrestrial environments. Palaeobiodiversity and Palaeoenvironments, 98(1), 153–164.Google Scholar
  80. Slater, S. M., McKie, T., Vieira, M., Wellman, C. H., & Vajda, V. (2017). Episodic river flooding events revealed by palynological assemblages in Jurassic deposits of the Brent Group, North Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 485, 389–400.CrossRefGoogle Scholar
  81. Slater, S. M., Wellman, C. H., Romano, M. & Vajda, V. (2018). Dinosaur-plant interactions within a Middle Jurassic ecosystem palynology of the Burniston Bay dinosaur footprint locality, Yorkshire, UK. In S. M. Slater, E. Kustatscher & V. Vajda, (Eds.), Jurassic biodiversity and terrestrial environments. Palaeobiodiversity and Palaeoenvironments, 98(1), 139–151.Google Scholar
  82. Stampfli, G. M., & Borel, G. D. (2002). A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters, 196(1), 17–33.CrossRefGoogle Scholar
  83. Stefanowicz, S. (2008). Palynostratigraphy and palaeoclimatic analysis of Lower-Middle Jurassic (Pliensbachian-Bathonian) of the Inner Hebrides, NW Scotland (pp. 34). Dissertations in Geology at Lund University.Google Scholar
  84. Stocklin, J. (1968). Structural history and tectonic of Iran: a review. American Association of Petroleum Geologists Bulletin, USA, 52, 1229–1258.Google Scholar
  85. Stocklin, J., & Nabavi, M. H. (1971). Explanatory text of the Boshruyeh Quadrangle map 1: 250,000. Quadr. J, 7, 1–50.Google Scholar
  86. Stukins, S., Jolley, D. W., McIlroy, D., & Hartley, A. J. (2013). Middle Jurassic vegetation dynamics from allochthonous palynological assemblages: an example from a marginal marine depositional setting; Lajas Formation, Neuquén Basin, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 392, 117–127.CrossRefGoogle Scholar
  87. Takin, M. (1972). Iranian geology and continental drift in the Middle East. Nature, 235(5334), 147–150.CrossRefGoogle Scholar
  88. Thierry, J. (2000). Middle Callovian (157-155 ma). In J. Dercourt, M. Gaetani et al. (Eds.), Atlas Peri - Tethys, Palaeogeographical maps (pp. 1–97). Paris: CCGM/CGMW.Google Scholar
  89. Tripathi, A. (2001). Permian, Jurassic and Early Cretaceous Palynofloral assemblages from subsurface sedimentary rocks in Chuperbhita Coalfield, Rajmahal Basin, India. Review of Palaeobotany and Palynology, 113, 237–259.CrossRefGoogle Scholar
  90. Tripathi, A. (2004). Palynology evidences of hitherto unrecognized Jurassic sedimentation in Rajmahal Basin, India. Rìvista Italiana di Paleontologia e Stratigrafia, 110(1), 35–42.Google Scholar
  91. Tyson, R. V. (1987). The genesis and palynofacies characteristics of marine petroleum source rocks. Geological Society, London, Special Publications, 26(1), 47–67.CrossRefGoogle Scholar
  92. Tyson, R. V. (1993). Palynofacies analysis. In D. G. Jenkins (Ed.), Applied micropaleontology (pp. 153–172). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  93. Tyson, R. V. (1995). Sedimentary organic matter; organic facies and palynofacies (p. 615). London: Chapman and Hall.CrossRefGoogle Scholar
  94. Vaez-Javadi, F., & Mirzaei-Ataabadi, M. (2006). Jurassic plant macrofossils from the Hojedk Formation, Kerman area, east-Central Iran. Alcheringa, 30(1), 63–96.CrossRefGoogle Scholar
  95. Vakhrameev, V. A. (1987). Climates and the distribution of some gymnosperms in Asia during the Jurassic and Cretaceous. Review of Palaeobotany and Palynology, 51, 205–212.CrossRefGoogle Scholar
  96. Vakhrameev, V. A. (1991). Jurassic and Cretaceous floras and climates of the earth (p. 318). Cambridge University Press.Google Scholar
  97. Vajda, V. (2001). Aalenian to Cenomanian terrestrial palynofloras of SW Scania, Sweden. Acta Palaeontologica Polonica, 46(3), 403–426.Google Scholar
  98. Van der Zwan, C. J. (1990). Palynostratigraphy and Palynofacies reconstruction of the Upper Jurassic to lowermost Cretaceous of the Draugen field, offshore mid Norway. Review of Palaeobotany and Palynology, 62, 157–186.CrossRefGoogle Scholar
  99. van Waveren, I., & Visscher, H. (1994). Analysis of the composition and selective preservation of organic matter in surficial deep-sea sediments from a high-productivity area (Banda Sea, Indonesia). Palaeogeography, Palaeoclimatology, Palaeoecology, 112(1–2), 85–111.CrossRefGoogle Scholar
  100. Vassiliev, Y. (1984). Mesozoic plant fossils from coal areas in Iran. Atlas of the Ministry of Mine and Metal 2(2), 97 pp., 47 pls.Google Scholar
  101. Volkheimer, W., Rauhut, O. W. M., Quattrocchio, M. E., & Martinez, M. A. (2008). Jurassic paleoclimates in Argentina, a review. Revista de la Asociación Geológica Argentina, 63(4), 549–556.Google Scholar
  102. Vozenin-Serra, & Taugourdeau-Lantz, J. (1985). La flore de la formation Shemshak (Rhetien a Bajocien; Iran); rapports avec les flores contemporaines; implications paleogeographiques. Bulletin de la Société Géologique de France, 1(5), 663–678.Google Scholar
  103. Wilmsen, M., Fürsich, F. T., Seyed-Emami, K., & Majidifard, M. R. (2009a). An overview of the lithostratigraphy and facies development of the Jurassic system on the Tabas Block, eastcentral Iran. In M. F.  Brunet, M. Wilmsen & J. Granath (Eds.), South Caspian to Central Iran basins. Geological Society, London, Special Publications, 312, 323–344.Google Scholar
  104. Wilmsen, M., Fürsich, F. T., Seyed-Emami, K., Majidifard, M. R., & Taheri, J. (2009b). The Cimmerian orogeny in northern Iran: Tectono-stratigraphic evidence from the foreland. Terra Nova, 21(3), 211–218.CrossRefGoogle Scholar
  105. Wilmsen, M., Fürsich, F. T., & Taheri, J. (2009c). The Shemshak Group (Lower–Middle Jurassic) of the Binalud Mountains, NE Iran: stratigraphy, depositional environments and geodynamic implications. Geological Society, London, Special Publications, 312(1), 175–188.CrossRefGoogle Scholar
  106. Wilmsen, M., Fürsich, F. T., Seyed-Emami, K., Majidifard, M. R., & Zamani-Pedram, M. (2010). Facies analysis of a large-scale Jurassic shelf-lagoon: the Kamar-e-Mehdi Formation of east-Central Iran. Facies, 56(1), 59–87.CrossRefGoogle Scholar
  107. Wood, G. D., Gabriel, A. M., & Lawson, J. C. (1996). Chapter 3: Palynological techniques-processing and microscopy. In J. Jansonius & D. C. McGregor (Eds.), Palynology: Principles and applications. Dallas, American Association of Stratigraphic Palynologists Foundation, 1, 29–50.Google Scholar
  108. Zavattieri, A. M., Rosenfeld, U., & Volkheimer, W. (2008). Palynofacies analysis and sedimentary environment of Early Jurassic coastal sediments at the southern border of the Neuquén Basin, Argentina. Journal of South American Earth Sciences, 25(2), 227–245.CrossRefGoogle Scholar
  109. Zonneveld, K. A., Versteegh, G. J., & de Lange, G. J. (1997). Preservation of organic-walled dinoflagellate cysts in different oxygen regimes: a 10,000 year natural experiment. Marine Micropaleontology, 29(3–4), 393–405.CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mohammad Taghi Badihagh
    • 1
  • Freshteh Sajjadi
    • 1
    Email author
  • Taghi Farmani
    • 1
  • Dieter Uhl
    • 2
  1. 1.School of Geology, Faculty of ScienceUniversity of TehranTehranIran
  2. 2.Senckenberg Forschungsinstitut und Naturmuseum FrankfurtFrankfurt am MainGermany

Personalised recommendations