Advertisement

Palaeobiodiversity and Palaeoenvironments

, Volume 99, Issue 3, pp 401–424 | Cite as

Floral diversity and environment during the middle Siwalik sedimentation (Pliocene) in the Arunachal sub-Himalaya

  • Mahasin Ali Khan
  • Meghma Bera
  • Robert A. Spicer
  • Teresa E. V. Spicer
  • Subir BeraEmail author
Original Paper

Abstract

A comprehensive morphotaxonomical evaluation of diverse angiospermic dicotyledonous leaf impressions recovered from the middle part of the Siwalik succession (Subansiri Formation: Pliocene) of Arunachal Pradesh, eastern Himalaya, India, shows that the leaf remains are comparable to modern Glochidion J. R. Forst. and G. Forst. (Phyllanthaceae), Bauhinia L., Callerya Endl. (Fabaceae), Mitragyna Korth. (Rubiaceae), Beilschmiedia Nees (Lauraceae), Uvaria L. (Annonaceae), Neolamarckia Bosser (Rubiaceae), Sorindeia Thouars (Anacardiaceae), Lagerstroemia L. (Lythraceae), and Premna L. (Lamiaceae). Among these taxa, seven species are new to the Neogene floras of the Indian subcontinent. Analyses of the floral assemblage, with respect to the present-day distribution pattern of modern equivalent taxa and the physiognomic characters of the recovered fossil leaves, suggest that a tropical evergreen forest was growing in a warm humid climate in the region at the time of deposition. This qualitative climatic data is also corroborated by our previously published quantitative data obtained from a CLAMP (climate leaf analysis multivariate program) analysis on the middle Siwalik floral assemblage. The presence of some Southeast Asian elements in the fossil assemblage provides clear evidence of free exchange of taxa across southern Asia in the Pliocene.

Keywords

Leaf impressions Middle Siwalik Pliocene Palaeoenvironment Phytogeography Arunachal Pradesh 

Notes

Acknowledgements

We acknowledge the UGC-CAS VII Department of Botany, University of Calcutta, for necessary facilities. We thank Sri Bimalendu De, Ex Dy. D.G., and Sri Sambhu Chakrabarty, Sr. Geologist, Geological Survey of India, Operation Arunachal, Itanagar, for help and cooperation during collection of fossil specimens. Thanks are due to the authorities of Central National Herbarium, Sibpur, Howrah, for permission to consult the Herbarium. Finally, we would like to thank two anonymous reviewers for ardent efforts to improve our article.

Funding information

This work was financially supported by the Department of Science and Technology (DST), Government of India, New Delhi (grant number SR/S4/ES-67/2003).

Compliance with ethical standards

Conflict of interest:

The authors declare that they have no conflict of interest.

References

  1. Agarwal, R. P., Srivastava, A. K., & Maithani, A. (1991). Geology of the eastern Himalayan foothill belt of Bhutan and Arunachal Pradesh: an overview. Himalayan Geology, 2(2), 197–205.Google Scholar
  2. Anand-Prakash, & Singh, T. (2000). Nature, composition, rank (maturation) and depositional environment of Siwalik coals from Arunachal Himalaya. Himalayan Geology, 21(1 &2), 17–29.Google Scholar
  3. Antal, J. S., & Awasthi, N. (1993). Fossil flora from the Himalayan foot-hills of Darjeeling district, West Bengal and its palaeoecological and phytogeographical significance. Palaeobotanist, 42(1), 14–60.Google Scholar
  4. Antal, J. S., & Prasad, M. (1996). Some more leaf-impressions from the Himalayan foothills of Darjeeling District, West Bengal, India. Palaeobotanist, 43, 1–9.Google Scholar
  5. Antal, J. S., & Prasad, M. (1998). Morphotaxonomic study of some more fossil leaves from the lower Siwalik sediments of West Bengal, India. Palaeobotanist, 47, 86–98.Google Scholar
  6. APG IV. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181, 1–20.CrossRefGoogle Scholar
  7. Awasthi, N., & Prasad, M. (1990). Siwalik plant fossils from Surai Khola area, western Nepal. Palaeobotanist, 38, 298–318.Google Scholar
  8. Axelrod, D., & Bailey, H. P. (1969). Palaeotemperature analysis of Tertiary floras. Palaeogeography, Palaeoclimatology, Palaeoecology, 6, 163–195.CrossRefGoogle Scholar
  9. Bande, M. B., & Prakash, U. (1986). The Tertiary flora of Southeast Asia with remarks on its palaeoenvironment and phytogeography of the Indo-Malayan region. Review of Palaeobotany and Palynology, 49, 203–233.CrossRefGoogle Scholar
  10. Bora, D. S., & Shukla, U. K. (2005). Petrofacies implication for the Lower Siwalik Foreland Basin evolution, Kumaun Himalaya, India. Special Publication of the Palaeontological Society of India, 2, 163–179.Google Scholar
  11. Brandis, D. (1971). Indian trees. Bishen Singh, Mahenra Pal Singh, Deradun.Google Scholar
  12. Cain, S. A. (1944). Foundation of plant geography. New York: Harper & Brother Co.Google Scholar
  13. Chirouze, F., Dupont-Nivet, G., Huyghe, P., van der Beek, P., Chakraborti, T., Bernet, M., & Erens, V. (2012). Magnetostratigraphy of the Neogene Siwalik Group in the far eastern Himalaya: Kameng section, Arunachal Pradesh, India. Journal of Asian Earth Science, 44, 117–135.CrossRefGoogle Scholar
  14. Ding, L., Spicer, R. A., Yang, J., Xu, Q., Cai, F., Li, S., Lai, Q., Wang, H., Spicer, T. E. V., Yue, Y., Shukla, A., Srivastava, G., Khan, M. A., Bera, S., & Mehrotra, R. (2017). Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology, 45, 215–218.CrossRefGoogle Scholar
  15. Dorf, E. (1969). Palaeobotanical evidences of Mesozoic and Cenozoic climatic changes. Proceedings of the North American, paleontological Convention, pp. 323–346.Google Scholar
  16. Editing Group of Cenozoic Flora of China (EGCFC). (1978). Fossils of plant in China. Beijing: Science Press.Google Scholar
  17. Ellis, B., Daly, D. C., Hickey, L. J., Johnson, K. R., Mitchell, J. D., Wilf, P., & Wing, S. L. (2009). Manual of leaf architecture. Ithaca, NY: Cornell University Press.Google Scholar
  18. Hazra, P. K., Verma, D. M., & Giri, G. S. (1996). Materials for the flora of Arunachal Pradesh. Botanical Survey of India, 1, 1–693.Google Scholar
  19. Herman, A. B., & Spicer, R. A. (1996). Palaeobotanical evidence for a warm Cretaceous Arctic Ocean. Nature, 380, 330–333.CrossRefGoogle Scholar
  20. Hickey, L. J. (1977). Stratigraphy and palaeobotany of the Golden valley Formation (Early Tertiary) of western North Dakota. GSA Memoirs, 150, 181.Google Scholar
  21. Jacobs, B. F. (2002). Estimation of low-latitude paleoclimates using fossil angiosperm leaves: examples from the Miocene Tugen Hills, Kenya. Paleobiology, 28, 399–421.CrossRefGoogle Scholar
  22. Joshi, A., & Mehrotra, R. C. (2003). A thelypteridaceous fossil fern from the Lower Siwalik of the East Kameng District, Arunachal Pradesh, India. Journal Geological Society of India, 61, 483–486.Google Scholar
  23. Joshi, A., Tewari, R., Mehrotra, R. C., Chakraborty, P. P., & De, A. (2003). Plant remains from the Upper Siwalik sediments of West Kameng District, Arunachal Pradesh. Journal Geological Society of India, 61, 319–324.Google Scholar
  24. Karunakaran, C., & Ranga Rao, A. (1979). Status of exploration for hydrocarbons in Himalayan region—contributions to stratigraphy and structure. Geological Survey of India Miscellaneous Publication, 4(5), 1–66.Google Scholar
  25. Khan, M., De, B., & Bera, S. (2007). A fossil fern-leaflet of family Thelypteridaceae from the Middle Siwalik sediments of West Kameng District, Arunachal Pradesh. Journal of the Botanical Society of Bengal, 61(1), 65–69.Google Scholar
  26. Khan, M., De, B., & Bera, S. (2009). Leaf-impressions of Calophyllum L. from the Middle Siwalik sediments of Arunachal sub-Himalaya, India. Pleione, 3(1), 101–106.Google Scholar
  27. Khan, M., Ghosh, R., Bera, S., Spicer, R. A., & Spicer, T. E. V. (2011). Floral diversity during Plio-Pleistocene Siwalik sedimentation (Kimin Formation) in Arunachal Pradesh, India, and its palaeoclimatic significance. Palaeodiversity and Palaeoenvironments, 91, 237–255.CrossRefGoogle Scholar
  28. Khan, M., & Bera, S. (2012). Glochidion palaeogamblei sp. nov.—a new fossil leaf of Euphorbiaceae from the Pliocene sediments of Arunachal Pradesh, eastern India and its palaeoclimatic significance. In S. Panda & C. Ghosh (Eds.), Diversity and conservation of plants and traditional knowledge (pp. 149–154). Bishen Singh Mahendra Pal Singh: Dehra Dun.Google Scholar
  29. Khan, M. A., & Bera, S. (2014). New lauraceous species from the Siwalik forest of Arunachal Pradesh, eastern Himalaya, and their palaeoclimatic and palaeogeographic implications. Turkish Journal of Botany, 38, 453–464.CrossRefGoogle Scholar
  30. Khan, M. A., Spicer, R. A., Bera, S., Ghosh, R., Yang, J., Spicer, T. E. V., Guo, S., Su, T., Jacques, F., & Grote, P. J. (2014). Miocene to Pleistocene floras and climate of the eastern Himalayan Siwaliks, and new palaeoelevation estimates for the Namling-Oiyug Basin, Tibet. Global and Planetary Change, 113, 1–10.CrossRefGoogle Scholar
  31. Khan, M. A., Bera, S., Ghosh, R., Spicer, R. A., & Spicer, T. E. V. (2015). Leaf cuticular morphology of some angiosperm taxa from the Siwalik sediments (middle Miocene to lower Pleistocene) of Arunachal Pradesh, eastern Himalaya: systematic and palaeoclimatic implications. Review of Palaeobotany and Palynology, 214, 9–26.CrossRefGoogle Scholar
  32. Khan, M. A., Spicer, R. A., Spicer, T. E. V., & Bera, S. (2016). Occurrence of Shorea Roxburgh ex C. F. Gaertner (Dipterocarpaceae) in the Neogene Siwalik forests of eastern Himalaya and its biogeography during the Cenozoic of Southeast Asia. Review of Palaeobotany and Palynology, 233, 236–254.CrossRefGoogle Scholar
  33. Khan, M. A., Spicer, R. A., Spicer, T. E. V., & Bera, S. (2017). Evidence for diversification of Calophyllum L. (Calophyllaceae) in the Neogene Siwalik forests of eastern Himalaya. Plant Systematics and Evolution, 303, 371–386.CrossRefGoogle Scholar
  34. Konomatsu, M., & Awasthi, N. (1999). Plant fossils from Arumg Khola and Binai Khola Formation of Churia Group (Siwalik), west-central Nepal and their palaeoecological and phytogeographical significance. Palaeobotanist, 48, 163–181.Google Scholar
  35. Kovach, W. L., & Spicer, R. A. (1996). Canonical correspondence analysis of leaf physiognomy: a contribution to the development of a new palaeoclimatological tool. Palaeoclimates, 2, 125–138.Google Scholar
  36. Kumar, G. (1997). Geology of Arunachal Pradesh (pp. 1–217). Bangalore: Geological Society of India.Google Scholar
  37. Kumar, S., & Singh, T. (1982). Sandstone dykes in Siwalik sandstone-sedimentology and basin analysis—Subansiri District (NEFA), eastern Himalaya. Sedimentary Geology, 33, 217–236.CrossRefGoogle Scholar
  38. Kunte, S. V., Ganju, J. L., & Dutta, N. K. (1983). Geology and structure of the Tertiary belt between Bargang and Pachin Rivers, Arunachal Pradesh. Geological Survey of India, Miscellaneous Publication., 43, 124–129.Google Scholar
  39. Lakhanpal, R. N., & Awasthi, N. (1984). A late Tertiary florule from near Bikhnathore in West Champaran District, Bihar. In: Symposium on Evolutionary Botany and Biostratigraphy (pp. 587–596). Prof. A. K. Ghosh Commemoration Volume.Google Scholar
  40. Lau, K. M., & Yang, S. (1997). Climatology and interannual variability of the Southeast Asian summer monsoon. Advances in Atmospheric Science, 14, 141–162.CrossRefGoogle Scholar
  41. Liu, X., & Yin, Z.-Y. (2002). Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 183, 223–245.CrossRefGoogle Scholar
  42. Liu, Y.-S., Utescher, T., Zhou, Z.-K., & Sun, B.-N. (2011). The evolution of Miocene climates in North China: preliminary results of quantitative reconstructions from plant fossil records. Palaeogeography, Palaeoclimatology, Palaeoecology, 304, 308–317.CrossRefGoogle Scholar
  43. Mehrotra, R. C., Liu, X. Q., Li, C. S., Wang, Y. F., & Chauhan, M. S. (2005). Comparison of the Tertiary flora of Southwest China and Northeast India and its significance in the antiquity of the modern Himalayan flora. Review of Palaeobotany and Palynology, 135, 145–163.CrossRefGoogle Scholar
  44. Mosbrugger, V., & Utescher, T. (1997). The coexistence approach—a method for quantitative reconstructions of Tertiary terrestrial palaeoclimatic data using plant fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 134, 61–86.CrossRefGoogle Scholar
  45. Pearson, R. S., & Brown, H. P. (1932). Commercial timbers of India. 1 & 2. Government of India: Central Publication Branch, Calcutta.Google Scholar
  46. Parkash, B., Sharma, R. P., & Roy, A. K. (1980). The Siwalik group (Molasse) sediments shed by collision of continental plates. Sedimentary Geology, 25, 127–159.CrossRefGoogle Scholar
  47. Prasad, M. (1994). Morphotaxonomical study on angiospermous plant remains from the foot hills of Kathgodam, North India. Phytomorphology, 44, 115–126.Google Scholar
  48. Prasad, M., & Awasthi, N. (1996). Contribution to the Siwalik flora from Surai Khola sequence, western Nepal and its palaeoecological and phytogeographical implications. Palaeobotanist, 43, 1–42.Google Scholar
  49. Prasad, M., Ghosh, R., & Tripathi, P. P. (2004). Floristics and climate during Siwalik (Middle Miocene) near Kathgodam in the Himalayan foot-hills of Uttranchal, India. Journal of Paleaontological Society of India, 49, 35–93.Google Scholar
  50. Ranga Rao, A. (1983). Geology and hydrocarbon potential of a part of Assam-Arankan basin and its adjacent region. Petroleum Asia Journal, 4, 127–158.Google Scholar
  51. Ranga Rao, A., Khan, K. N., Venkatachala, B. S., Sastri, V. V. (1979). Neogene/Quaternary boundary and the Siwalik. In Sastri, M. V. A. et al. (Ed.), Proceedings of Field Conference on Neogene-Quaternary Boundary, India (pp. 131–142).Google Scholar
  52. Santapau, H., & Henry, A. N. (1973). A dictionary of the flowering plants in India. New Delhi: Publication and Information Directorate.Google Scholar
  53. Singh, T. (2007). Geology of Itanagar capital complex, Arunachal Himalaya, with special reference to neotectonics. Journal of the Geological Society of India, 70, 339–352.Google Scholar
  54. Singh, S. K., & Prasad, M. (2007). Late Tertiary leaf flora of Mahuadanr Valley, Jharkhand. Journal of the Palaeontological Society of India, 52(2), 175–194.Google Scholar
  55. Shukla, A., & Mehrotra, R. C. (2014). Paleoequatorial rain forest of western India during the EECO: evidence from Uvaria L. fossil and its geological distribution pattern. Historical Biology, 26(6), 693–698.CrossRefGoogle Scholar
  56. Tao, J. R. (2000). The evolution of the Late Cretaceous–Cenozoic floras in China. Beijing: Science Press.Google Scholar
  57. Teodoridis, V., Mazouch, P., Spicer, R. A., & Uhl, D. (2011). Refining CLAMP—investigations towards improving the Climate Leaf Analysis Multivariate Program. Palaeogeography, Palaeoclimatology, Palaeoecology, 299, 39–48.CrossRefGoogle Scholar
  58. van Dam, J. A. (2006). Geographic and temporal patterns in the late Neogene (12 –3 Ma) aridification of Europe: the use of small mammals as paleoprecipitation proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 190–218.CrossRefGoogle Scholar
  59. Wolfe, J. A. (1993). A method of obtaining climatic parameters from leaf assemblages. United States Geological Survey Bulletin, 2040, 1–73.Google Scholar
  60. Wolfe, J. A., & Spicer, R. A. (1999). Fossil leaf character states: multivariate analysis. In T. P. Jones, & N. P. Rowe. (Eds.), Fossil plants and spores: modern techniques (pp. 233–239). London: Geological Society of London.Google Scholar
  61. Xing, Y., Utescher, T., Jacques, F. M. B., Su, T., Liu, Y. (. C.)., Huang, Y., & Zhou, Z. (2012). Paleoclimatic estimation reveals a weak winter monsoon in southwestern China during the-Miocene: evidence from plant macrofossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 358–360, 19–26.Google Scholar
  62. Yang, J., Spicer, R. A., Spicer, T. E. V., & Li, C.-S. (2011). “CLAMP online”: a new web-based palaeoclimate tool and its application to the terrestrial Paleogene and Neogene of North America. Palaeobiodiversity and Palaeoenvironments, 91, 163–183.CrossRefGoogle Scholar
  63. Yang, J., Spicer, R. A., Spicer, T. E. V., Arens, N. C., Jacques, F. M. B., Su, T., Kennedy, E. M., Herman, A. B., Steart, D. C., Srivastava, G., Mehrotra, R. C., Valdes, P. J., Mehrotra, N. C., Zhou, Z. K., & Lai, J. S. (2015). Leaf form-climate relationships on the global stage: an ensemble of characters. Global Ecology and Biogeography, 24(10), 1113–1125.CrossRefGoogle Scholar
  64. Zhang, S. P., & Wang, B. (2008). Global monsoon summer rainy seasons. International Journal of Climatology, 28, 1563–1578.CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mahasin Ali Khan
    • 1
    • 2
  • Meghma Bera
    • 2
  • Robert A. Spicer
    • 3
    • 4
  • Teresa E. V. Spicer
    • 5
  • Subir Bera
    • 2
    Email author
  1. 1.Department of BotanySidho-Kanho-Birsha UniversityPuruliaIndia
  2. 2.Centre of Advanced Study, Department of BotanyUniversity of CalcuttaKolkataIndia
  3. 3.School of Environment, Earth and Ecosystem SciencesThe Open UniversityMilton KeynesUK
  4. 4.Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglunPeople’s Republic of China
  5. 5.Institute of BotanyThe Chinese Academy of SciencesBeijingChina

Personalised recommendations