Evolution of the power stroke in early Equoidea (Perissodactyla, Mammalia)

  • Sandra Engels
  • Julia A. Schultz
Original Paper


During the early evolution of Equoidea, two families co-existed, Equidae and Palaeotheriidae. Both groups show a similar ancestral molar morphology and evolved from bunodont to lophodont or selenolophodont (lophodont with crescent-shaped cutting edge in some form) respectively, with a clearly pronounced ectoloph. Fossils of the here studied brachydont equids and palaeotheriids are known from the early Eocene to the middle Miocene in North America and Eurasia. Due to the rich fossil record, dental evolution and related functional shifts can be investigated in detail in each family. In this study, we focused on changes in the different masticatory paths, identified different functions within the power stroke and evaluated the efficiency of the different modes in mastication to correlate tooth morphology to the potential palaeodiets. The analysis is based on three-dimensional (3D) polygonal surface scans, allowing the detailed investigation of morphological features. The results show that primitive equoids possess well-developed cutting and shearing structures, despite being generally referred to as simply bunodont. These structures enable the primitive forms to break down structural plant parts more efficiently than for example Phenacodus (‘condylarth’ outgroup), showing simple rounded cusps, and therefore representing a more primitive type of bunodont dentition. It is general consensus that the diet of the more derived early equoids shifts to a higher percentage of tough plant parts and they adopt different strategies to efficiently comminute those parts. Equids emphasise cutting and shearing both buccally and lingually, trending towards a one-phase power stroke, a pattern resembling that of modern hypsodont Equidae. Our results suggest that the derived brachydont equids specialised to consume leaves rather than grasses. In comparison, derived palaeotheriids mainly emphasise shearing and cutting function buccally and a distinct grinding function in a two-phase power stroke. The combination of different functions suggest a broader diet different from only leaves, likely including twigs or hard fruits.


Dentition Molars Horse 3D Power stroke Efficiency Mastication 



We would like to thank Wighart von Koenigswald and Thomas Martin for support and advice. We are grateful to all members of the DFG Research Unit 771 for fruitful discussions. We thank the people being in charge for the collections used: D. Bohaska (Smithsonian National Museum of Natural History Washington D.C), L. Costeur and M. Schneider (Naturhistorisches Museum Basel), J. Galkin (American Museum of Natural History New York), P. Gingerich (University of Michigan), E. Milsom and M. Blume (Hessisches Landesmuseum Darmstadt), K. Rose (Johns Hopkins University Baltimore), G. Rößner (Bayerische Staatssammlung für Paläontologie und Geologie der LMU München), S. Schaal, J. Habersetzer, E. Brahm and M. Ackermann (Senckenberg Forschungsinstitut und Naturmuseum Frankfurt), R. Schellhorn (Steinmann-Institut, Universität Bonn), S. Shelton (Museum of Geology South Dakota School of Mines & Technology Rapid City), R. Ziegler (Staatliches Naturkunde Museum Stuttgart). We thank Krister T. Smith for his help and suggestions that improved the manuscript. We are deeply grateful to Mikael Fortelius, Christine M. Janis and one anonymous reviewer for their helpful and valuable comments. This is publication no. 99 of the DFG Research Unit 771.


The project is part of the DFG Research Unit 771 and was funded by the Deutsche Forschungsgemeinschaft (DFG For771-project D2).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Academy of Prosthodontics. (2005). Glossary-of-prosthodontic-terms (8th edition). Journal of Prosthetic Dentistry, 94(1), 10–92.CrossRefGoogle Scholar
  2. Ahbusch-Siewert, S. (1983). Gebissmorphologische Untersuchungen an eurasiatischen Anchitherien (Equidae, Mammalia) unter besonderer Berücksichtigung der Fundstelle Sandelzhausen. Courier Forschungsinstitut Senckenberg, 62, 1–36.Google Scholar
  3. Anders, U. (2011). Funktionsmorphologische Veränderungen und Funktionalitätserhaltung in bunodonten, selenodonten und secodonten Gebissen. Dissertation thesis, Rheinische Friedrich-Wilhelm-Universität Bonn, urn:nbn:de:hbz:5N-27360.Google Scholar
  4. Anders, U., Koenigswald, W. von, Ruf, I., & Smith, H. B. (2010). Generalized individual dental age stages for fossil and extant placental mammals. Paläontologische Zeitschrift, 85, 321–339.Google Scholar
  5. Bae, D. H., Welch, J. G., & Smith, A. M. (1981). Efficiency of mastication in relation to hay intake by cattle. Journal of Animal Science, 52(6), 1371–1375.CrossRefGoogle Scholar
  6. Bai, B. (2017). Eocene Pachynolophinae (Perissodactyla, Palaeotheriidae) from China, and their palaeobiogeographical implications. Palaeontology, 60(6), 837–852.CrossRefGoogle Scholar
  7. Bai, B., Wang, Y., Meng, J., Li, Q., & Jin, X. (2014). New early Eocene basal tapiromorph from southern China and its phylogenetic implications. PLoS One, 9(10), e110806.CrossRefGoogle Scholar
  8. Batzli, G. O., & Hume, I. D. (1994). Foraging and digestion in herbivores. In D. J. Chivers, & P. Langer (Eds.) The digestive system in mammals: Food, form and function (pp. 313–314). Cambridge: Cambridge University Press.Google Scholar
  9. Boyer, D. (2008). Relief index of second mandibular molars is a correlate of diet among prosimian primates and other euarchontan mammals. Journal of Human Evolution, 55, 1118–1137.CrossRefGoogle Scholar
  10. Brockhaus. (1982). dtv Brockhaus Lexikon. Mannheim: F.A. Brockhaus.Google Scholar
  11. Butler, M. (1951a). The milk-molars of Perissodactyla, with remarks on molar occlusion. Proceeding of the Zoological Journal of London, 121, 777–817.CrossRefGoogle Scholar
  12. Butler, P. M. (1951b). Molarization of the premolars in the Perissodactyla. Proceeding of the Zoological Journal of London, 121, 819–843.CrossRefGoogle Scholar
  13. Butler, P. M. (1980). Functional aspects of the evolution of rodent molars. Palaeovertebrata (Mémoire Jubilaire René Lavocat), 249–262.Google Scholar
  14. Butler, P. M. (1985). Homologies of molar cusps and crests, and their bearing on assessments of rodent phylogeny. In W. P. Luckett & J. L. Hartenberger (Eds.), Evolutionary relationships among rodents (pp. 381–401). New York and London: Plenum Press.CrossRefGoogle Scholar
  15. Clauss, M., Nunn, C., Fritz, J., & Hummel, J. (2009). Evidence for a tradeoff between retention time and chewing efficiency in large mammalian herbivores. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 154, 376–382.CrossRefGoogle Scholar
  16. Collinson, M. E., & Hooker, J. J. (1991). Fossil evidence of interactions between plants and plant-eating animals. Philosophical Transactions of the Royal Society B, 333, 197–208.CrossRefGoogle Scholar
  17. Costa, R. L. J., & Greaves, W. S. (1981). Experimentally produced tooth wear facets and the direction of jaw motion. Journal of Paleontology, 55(3), 635–638.Google Scholar
  18. Crompton, A. W. (1971). The origin of the tribosphenic molar. In D. M. Kermack & K. A. Kermack  (Eds.) Early Mammals. Zoological Journal of the Linnean Society, 50(Suppl. 1), 65–87.Google Scholar
  19. Crompton, A. W., & Hiiemae, K. (1969). How mammalian teeth work. Discovery, 5(1), 23–34.Google Scholar
  20. Crompton, A. W., & Hiiemae, K. (1970). Molar occlusion and mandibular movements during occlusion in the American opossum, Didelphis marsupialis L. Zoological Journal of the Linnean Society, 49, 21–47.CrossRefGoogle Scholar
  21. Crompton, A. W., & Kielan-Jaworowska, Z. (1978). Molar structure and occlusion in cretaceous therian mammals. In P. M. Butler & K. A. Joysey (Eds.), Development, function and evolution of teeth (pp. 249–287). London: Academic Press.Google Scholar
  22. Damuth, J., & Janis, C. M. (2014). A comparison of observed molar wear rates in extant herbivorous mammals. Annales Zoologici Fennici, 51, 188–200.CrossRefGoogle Scholar
  23. Danilo, L., Remy, J. A., Vianey-Liaud, M., Marandat, B., Sudre, J., & Lihoreau, F. (2013). A new Eocene locality in southern France sheds light on the basal radiation of Palaeotheriidae (Mammalia, Perissodactyla, Equoidea). Journal of Vertebrate Paleontology, 33(1), 195–215.CrossRefGoogle Scholar
  24. Drucker, P. F. (2007). The effective executive. Oxford: Elsevier.Google Scholar
  25. Engels, S. (2007). Funktionelle Morphologie des Schädels und der Bezahnung der Ursidae. Diploma thesis. Johann Wolfgang Goethe-Universität Frankfurt am Main:
  26. Engels, S. (2011). Funktionelle und morphologische Transformationen der Molaren bei frühen Hippomorpha im Hinblick auf den Mastikationsprozess. Dissertation thesis, Rheinische Friedrich-Wilhelm-Universität Bonn, urn:nbn:de:hbz:5N-27227.Google Scholar
  27. Evans, A. R. (2005). Connecting morphology, function and tooth wear in microchiropterans. Biological Journal of the Linnean Society, 85, 81–96.CrossRefGoogle Scholar
  28. Evans, A. R., & Fortelius, M. (2008). Three-dimensional reconstruction of tooth relationships during carnivoran chewing. Palaeontologica Electronica, 11(2), 1–11.Google Scholar
  29. Evans, A. R., & Janis, C. M. (2014). The evolution of high dental complexity in the horse lineage. Annales Zoologici Fennici, 51(1–2), 73–79.CrossRefGoogle Scholar
  30. Evans, A. R., & Sanson, G. D. (2003). The tooth of perfection: Functional and spatial constraints on mammalian tooth shape. Biological Journal of the Linnean Society, 78, 173–191.CrossRefGoogle Scholar
  31. Evans, A. R., & Sanson, G. D. (2006). Spatial and functional modeling of carnivore and insectivore molariform teeth. Journal of Morphology, 267, 649–662.CrossRefGoogle Scholar
  32. Evans, A. R., Wilson, G. P., Fortelius, M., & Jernvall, J. (2007). High-level similarity of dentitions in carnivorans and rodents. Nature, 445, 78–81.CrossRefGoogle Scholar
  33. Forsten, A. (1991). Size trends in holarctic anchitherines (Mammalia, Equidae). Journal of Paleontology, 65(1), 147–159.CrossRefGoogle Scholar
  34. Fortelius, M. (1981). Functional aspects of occlusal cheek-tooth morphology in hypsodont, non-ruminant ungulates (pp. 153–162). Barcelona: International Symposium on Concepts and Methods in Paleontology.Google Scholar
  35. Fortelius, M. (1982). Ecological aspects of dental functional morphology in the Plio-Pleistocene rhinoceroses of Europe. In B. Kurtén (Ed.), Teeth: Form, function, and evolution (pp. 163–181). New York: Columbia University Press.Google Scholar
  36. Fortelius, M. (1985). Ungulate cheek teeth: Developmental, functional, and evolutionary interrelations. Acta Zoologica Fennica, 180, 1–76.Google Scholar
  37. Fortelius, M., & Solounias, N. (2000). Functional characterization of ungulate molars using the abrasion-attrition wear gradient: a new method for reconstructing paleodiets. American Museum Novitates, 3301, 1–36.CrossRefGoogle Scholar
  38. Fortelius, M., Eronen, J., Liu, L., Pushkina, D., Tesakov, A., Vislobokova, I., & Zhang, Z. (2003). Continental-scale hypsodonty patterns, climatic paleobiogeography and dispersal of Eurasian Neogene large mammal herbivores. In J. W. F. Reumer & W. Wessels (Eds.) Distribution and migration of tertiary mammals in Eurasia - A volume in honor of Hans de Bruijn (pp. 1–12). Deinsea 10. Natuurmuseum Rotterdam.Google Scholar
  39. Franzen, J. L. (1984). Die Stammesgeschichte der Pferde in ihrer wissenschaftshistorischen Entwicklung. Natur und Museum, 114(6), 149–162.Google Scholar
  40. Franzen, J. L. (1985). Exceptional preservation of Eocene vertebrates in the lake deposit of Grube Messel (West Germany). Philosophical Transactions of the Royal Society B, 311, 181–186.CrossRefGoogle Scholar
  41. Franzen, J. L. (1989). Origin and systematic position of the Palaeotheriidae. In D. R. Prothero & R. M. Schoch (Eds.), The Evolution of Perissodactyls (pp. 102–107). Oxford: Oxford University Press.Google Scholar
  42. Franzen, J. L. (2006). Eurohippus n.g., a new genus of horses from the Middle to Late Eocene of Europe. Senckenbergiana lethaea, 86(1), 97–102.CrossRefGoogle Scholar
  43. Franzen, J. L. (2007). Eozäne Equoidea (Mammalia, Perissodactyla) aus der Grube Messel bei Darmstadt (Deutschland); Funde der Jahre 1969–2000. Schweizerische Paläontologische Abhandlungen, 127, 1–245.Google Scholar
  44. Franzen, J. L., & Habersetzer, J. (2017). Complete skeleton of Eurohippus messelensis (Mammalia, Perissodactyla, Equoidea) from the early middle Eocene of Grube Messel (Germany). Palaeobiodiversity and Palaeoenvironments, 97(4), 807-832.Google Scholar
  45. Fritz, J., Hummel, J., Kienzle, E., Arnold, C., Nunn, C., & Clauss, M. (2009). Comparative chewing efficiency in mammalian herbivores. Oikos, 118, 1623–1632.CrossRefGoogle Scholar
  46. Froehlich, D. J. (1999). The phylogenetic systematics of the basal perissodactyls. Journal of Vertebrate Paleontology, 19, 140–159.CrossRefGoogle Scholar
  47. Froehlich, D. J. (2002). Quo vadis eohippus? The systematics and taxonomy of the early Eocene equids (Perissodactyla). Zoological Journal of the Linnean Society, 134(2), 141–256.CrossRefGoogle Scholar
  48. Gipps, J. M., & Sanson, G. D. (1984). Mastication and digestion in Pseudocheirus. In A. P. Smith & I. D. Hume (Eds.), Possums and gliders (pp. 237–246). Sydney: Australian Mammal Society.Google Scholar
  49. Gouraud, H. (1971). Continuous shading of curved surfaces. IEEE Transactions on Computers, C-20(6), 623–629.CrossRefGoogle Scholar
  50. Greaves, W. S. (1973). The inference of jaw motion from tooth wear facets. Journal of Paleontology, 47(5), 1000–1001.Google Scholar
  51. Greaves, W. S. (1974). Functional implications of mammalian jaw point position. Forma et Functio, 7, 363–376.Google Scholar
  52. Grippo, J. O., Simring, M., & Schreiner, S. (2004). Attrition, abrasion, corrosion and abfraction revisited. A new perspective on tooth surface lesions. Journal of the American Dental Association, 135, 1109–1118.CrossRefGoogle Scholar
  53. Helkimo, E., Carlsson, G. E., & Melkimo, M. (1978). Chewing efficiency and state of dentition. Acta Odontolgica Scandinavica, 36(1), 33–41.CrossRefGoogle Scholar
  54. Herring, S. W., & Scapino, R. P. (1973). Physiology of feeding in miniature pigs. Journal of Morphology, 141, 427–460.CrossRefGoogle Scholar
  55. Hielscher, R. C., Schultz, J. A. & Martin, T. (2015). Wear pattern of the molar dentition of an extant an Oligocene bat assemblage with implications on functionality. Palaeobiodiversity and Palaeoenvironments 95: 597–611.Google Scholar
  56. Hiiemae, K. (1976). Masticatory movements in primitive mammals. In B. Anderson & B. Matthews (Eds.), Mastication (pp. 105–118). Bristol: Wright.Google Scholar
  57. Hiiemae, K. M., & Kay, R. F. (1973). Evolutionary trends in the dynamics of primate mastication. Symposium of the 4th International Congress of Primatology, 28–64.Google Scholar
  58. Holbrook, L. T. (1999). The phylogeny and classification of tapiromorph perissodactyls (Mammalia). Cladistics, 15(3), 331–350.CrossRefGoogle Scholar
  59. Holbrook, L. T., & Lapergola, J. (2011). A new genus of perissodactyl (Mammalia) from the Bridgerian of Wyoming, with comments on basal perissodactyl phylogeny. Journal of Vertebrate Paleontology, 31(4), 895–901.CrossRefGoogle Scholar
  60. Hunter, J., & Fortelius, M. (1994). Comparative dental occlusal morphology, facet development, and microwear in two sympatric species of Listriodon (Mammalia: Suidae) from the Middle Miocene of western Anatolia (Turkey). Journal of Vertebrate Paleontology, 14(1), 105–126.CrossRefGoogle Scholar
  61. Hylander, W. L., & Crompton, A. W. (1986). Jaw movements and patterns of mandibular bone strain during mastication in the monkey Macaca fascicularis. Archives of Oral Biology, 31(12), 841–848.CrossRefGoogle Scholar
  62. Hylander, W. L., Johnson, K. R., & Crompton, A. W. (1987). Loading patterns and jaw movements during mastication in Macaca fascicularis: A bone-strain, electromyographic, and cineradiographic analysis. American Journal of Physical Anthropology, 72, 287–314.CrossRefGoogle Scholar
  63. Janis, C. M. (1979). Mastication in the hyrax and its relevance to ungulate dental evolution. Palaeobiology, 5(1), 50–59.CrossRefGoogle Scholar
  64. Janis, C. M. (1990). The correlation between diet and dental wear in herbivorous mammals, and its relationship to the determination of diets of extinct species. In A. J. Boucot (Ed.), Evolutionary paleobiology of behavior and coevolution (pp. 241–260). Amsterdam: Elsevier.Google Scholar
  65. Janis, C. M. (2007). The horse series. In B. Regal (Ed.), Icons of evolution (pp. 257–280). West-port: Greenwood Press.Google Scholar
  66. Janis, C. M. (2008). An evolutionary history of browsing and grazing ungulates. In I. J. Gordon & H. H. T. Prins (Eds.), The ecology of browsing and grazing (pp. 21–45). Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
  67. Jernvall, J. (1995). Mammalian molar cusp patterns: developmental mechanisms of diversity. Acta Zoologica Fennica, 198, 1–61.Google Scholar
  68. Jernvall, J., Hunter, J. P., & Fortelius, M. (1996). Molar tooth diversity, disparity, and ecology in Cenozoic ungulate radiations. Science, 274, 1489–1492.CrossRefGoogle Scholar
  69. Jones, K. E., & Holbrook, L. T. (2016). The evolution of lateral accessory articulations in the lumbar region of perissodactyls. Journal of Vertebrate Paleontology, 36(6), e1224892.CrossRefGoogle Scholar
  70. Joomun, S. C., Hooker, J. J., & Collinson, M. E. (2008). Dental wear variation and implications for diet: an example from Eocene perissodactyls (Mammalia). Palaeogeography, Palaeoclimatology, Palaeoecology, 263, 92–106.CrossRefGoogle Scholar
  71. Kaiser, T. M. (2009). Anchitherium aurelianense (Equidae, Mammalia): a brachydont "dirty browser" in the community of herbivorous large mammals from Sandelzhausen (Miocene, Germany). Paläontologische Zeitschrift, 83, 131–140.CrossRefGoogle Scholar
  72. Karme, A., Rannikko, J., Kallonen, A., Clauss, M., & Fortelius, M. (2016). Mechanical modelling of tooth wear. Journal of the Royal Society Interface, 13(120), 20160399.CrossRefGoogle Scholar
  73. Kay, R. F. (1975). The functional adaptions of primate molar teeth. American Journal of Physical Anthropology, 43(2), 195–216.CrossRefGoogle Scholar
  74. Kay, R. F. (1977). The evolution of molar occlusion in the Cercopithecidae and early catarrhines. American Journal of Physical Anthropology, 46, 327–352.CrossRefGoogle Scholar
  75. Kay, R. F., & Hiiemae, K. M. (1974). Jaw movement and tooth use in recent and fossil primates. American Journal of Physical Anthropology, 40(2), 227–256.CrossRefGoogle Scholar
  76. King, S. J., Arrigo-Nelson, S. J., Pochron, S. T., Semprebon, G. M., Godfrey, L. R., Wright, P. C., & Jernvall, J. (2005). Dental senescence in a long-lived primate links infant survival to rainfall. Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16579–16583.CrossRefGoogle Scholar
  77. Koenigswald, W. von, & Schaarschmidt, F. (1983). Ein Urpferd aus Messel, dass Weinbeeren fraß. Natur und Museum, 113(3), 79–84.Google Scholar
  78. Koenigswald, W. von, Sander, P. M., Leite, M. B., Mörs, T., & Santel, W. (1994). Functional symmetries in the Schmelzmuster and morphology of rootless rodent molars. Zoological Journal of the Linnean Society, 110, 141–179.CrossRefGoogle Scholar
  79. Koenigswald, W. von, Anders, U., Engels, S., Schultz, J. A., & Ruf, I. (2010). Tooth morphology in fossil and extant Lagomorpha (Mammalia) reflects different mastication patterns. Journal of Mammalian Evolution, 17(4), 275–299.CrossRefGoogle Scholar
  80. Koenigswald, W. von, Anders, U., Engels, S., Schultz, J. A., & Kullmer, O. (2012). Jaw movement in fossil mammals: analysis, description and visualization. Paläontologische Zeitschrift, 87, 141–159.CrossRefGoogle Scholar
  81. Kullmer, O., Benazzi, S., Fiorenza, L., Schulz, D., Bacso, S., & Winzen, O. (2009). Technical note: Occlusal fingerprint analysis: Quantification of tooth wear pattern. American Journal of Physical Anthropology, 139(4), 600–605.CrossRefGoogle Scholar
  82. Lanyon, J. M., & Sanson, G. D. (1986). Koala (Phasolarctos cinereus) dentition and nutrition. II. Implications of tooth wear in nutrition. Journal of Zoology, 209, 169–181.CrossRefGoogle Scholar
  83. Lazzari, V., Charles, C., Tafforeau, P., Vianey-Liaud, M., Aguilar, J.-P., Jaeger, J.-J., Michaux, J., & Viriot, L. (2008). Mosaic convergence of rodent dentitions. PLoS One, 3(10), 1–13.CrossRefGoogle Scholar
  84. Logan, M., & Sanson, G. D. (2002). The effect of tooth wear on the feeding behavior of free-ranging koalas (Phascolarctos cinereus, Goldfuss). Journal of Zoology, 256, 63–69.CrossRefGoogle Scholar
  85. Lucas, P. W. (1979). The dental-dietary adaptions of mammals. Neues Jahrbuch für Geologie Paläontologie Monatshefte, 8, 486–512.Google Scholar
  86. Lucas, P. W. (2004). Dental functional morphology—how teeth work. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  87. Lucas, P. W., Omar, R., Al-Fadhalah, K., Almusallam, A. S., Henry, A. G., Michael, S., Thai, L. A., Watzke, J., Strait, D. S., & Atkins, A. G. (2013). Mechanisms and causes of wear in tooth enamel: implications for hominin diets. Journal of the Royal Society Interface, 10(80), 20120923.CrossRefGoogle Scholar
  88. Lucas, P. W., Casteren, A., Al-Fadhalah, K., Almusallam, A. S., Henry, A. G., Michael, S., Watzke, J., Reed, D. A., Diekwisch, T. G. H., Strait, D. S., & Atkins, A. G. (2014). The role of dust, grit and phytoliths in tooth wear. Annales Zoologici Fennici, 51, 143–152.CrossRefGoogle Scholar
  89. Luke, D. A., & Lucas, P. W. (1983). The significance of cusps. Journal of Oral Rehabilitation, 10, 197–206.CrossRefGoogle Scholar
  90. Lumsden, A. G. S., & Osborn, J. W. (1977). The evolution of chewing: a dentist's view of paleontology. Journal Dentistry, 4(4), 269–287.CrossRefGoogle Scholar
  91. MacFadden, B. J. (1976). Cladistic analysis of primitive equids with notes on other perissodactyls. Systematic Zoology, 25(1), 1–14.CrossRefGoogle Scholar
  92. MacFadden, B. J. (1986). Fossil horses from “Eohippus” (Hyracotherium) to Equus: scaling, Cope's law, and the evolution of body size. Paleobiology, 12(4), 355–369.CrossRefGoogle Scholar
  93. MacFadden, B. J. (1988). Fossil horses from “Eohippus” (Hyracotherium) to Equus, 2: rates of dental evolution revisited. Biological Journal of the Linnean Society, 35(1), 37–48.CrossRefGoogle Scholar
  94. MacFadden, B. J. (1994). Fossil horses: systematics, paleobiology, and evolution of the family Equidae. Cambridge. New York: Cambridge University Press.Google Scholar
  95. MacFadden, B. J. (2005). Fossil horses-evidence for evolution. Science, 307(5716), 1728–1730.CrossRefGoogle Scholar
  96. MacFadden, B. J., & Hulbert Jr., R. C. (1988). Explosive speciation at the base of the adaptive radiation of Miocene grazing horses. Nature, 336, 466–468.CrossRefGoogle Scholar
  97. Maier, W. (1978). Zur Evolution des Säugetiergebisses - Typologische und konstruktionsmorphologische Erklärungen. Natur und Museum, 108(10), 288–300.Google Scholar
  98. Maier, W. (1980). Konstruktionsmorphologische Untersuchungen am Gebiß der rezenten Prosimiae (Primates). Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft, 538, 1–158.Google Scholar
  99. McKenna, M., & Bell, S. K. (1997). Classification of mammals above the species level. New York: Columbia University Press.Google Scholar
  100. Merceron, G., Ramdarshan, A., Blondel, C., Boisserie, J.-R., Brunetiere, N., Francisco, A., Gautier, D., Milhet, X., Novello, A., & Pret, D. (2016). Untangling the environmental from the dietary: dust does not matter. Proceedings of the Royal Society B, 283(1838), 20161032.CrossRefGoogle Scholar
  101. Mihlbachler, M. C., Rivals, F., Solounias, N., & Semprebon, G. M. (2011). Dietary change and evolution of horses in North America. Science, 331, 1178–1181.CrossRefGoogle Scholar
  102. Mills, J. R. E. (1966). The functional occlusion of the teeth of Insectivora. Zoological Journal of the Linnean Society, 47(308), 1–22.Google Scholar
  103. Mills, J. R. E. (1967). A comparison of lateral jaw movements in some mammals from wear facets on the teeth. Archives of Oral Biology, 12, 645–661.CrossRefGoogle Scholar
  104. Owen-Smith, N. (1988). Megaherbivores - The influence of very large body size on ecology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  105. Pérez-Barberia, F. J., & Gordon, I. J. (1998a). The influence of molar occlusal surface area on the voluntary intake, digestion, chewing behavior and diet selection of red deer (Cervus elaphus). Journal of Zoology, 245, 307–316.CrossRefGoogle Scholar
  106. Pérez-Barberia, F. J., & Gordon, I. J. (1998b). Factors effecting food comminution during chewing in ruminants: a review. Biological Journal of the Linnean Society, 63, 233–256.CrossRefGoogle Scholar
  107. Piperno, D., & Pearsall, D. H. (1998). The silica bodies of tropical American grasses: Morphology, taxonomy and implications for the grass systematics and fossil phytolith identification. Smithsonian Contributions to Botany, 85, 1–40.CrossRefGoogle Scholar
  108. Radinsky, L. (1966). The adaptive radiation of the phenacodontid condylarths and the origin of the Perissodactyla. Evolution, 20, 408–417.CrossRefGoogle Scholar
  109. Reed, D. A., & Ross, C. F. (2010). The influence of food material properties on jaw kinematics in the primate Cebus. Archives of Oral Biology, 55, 946–962.CrossRefGoogle Scholar
  110. Rensberger, J. M. (1973). An occlusion model for mastication and dental wear in herbivorous mammals. Journal of Paleontology, 47(3), 515–528.Google Scholar
  111. Rensberger, J. M. (1986). Early chewing mechanisms in mammalian herbivores. Paleobiology, 12(4), 474–494.CrossRefGoogle Scholar
  112. Rensberger, J. M., Forsten, A., & Fortelius, M. (1984). Functional evolution of the cheek tooth pattern and chewing direction in Tertiary horses. Paleobiology, 10(4), 439–452.CrossRefGoogle Scholar
  113. Rose, K. D. (2006). The beginning of the age of mammals. Baltimore: The John Hopkins University Press.Google Scholar
  114. Rose, K. D., Holbrook, L. T., Rana, R. S., Kumar, K., Jones, K. E., Ahrens, H. E., Missiaen, P., Sahni, A., & Smith, T. (2014). Early Eocene fossils suggest that the mammalian order Perissodactyla originated in India. Nature Communications, 5, 5570.CrossRefGoogle Scholar
  115. Rose, K. D., Holbrook, L. T., & Luckett, W. P. (2017). Deciduous premolars of Eocene Equidae and their phylogenetic significance. Historical Biology, 1–30.Google Scholar
  116. Sanson, G. (2006). The biomechanics of browsing and grazing. American Journal of Botany, 93(10), 1531–1545.CrossRefGoogle Scholar
  117. Sanson, G. D., Kerr, S. A., & Gross, K. A. (2007). Do silica phytoliths really wear mammalian teeth? Journal of Archaeological Science, 34, 526–531.CrossRefGoogle Scholar
  118. Schultz, J. A. (2012). Funktionelle Morphologie und Abnutzungsmuster prätribosphenischer Molaren am Beispiel der Dryolestida (Mammalia, Cladotheria). Dissertation thesis, Rheinische Friedrich-Wilhelm-Universität Bonn, urn:nbn:de:hbz:5N-27873.Google Scholar
  119. Schultz, J. A., & Martin, T. (2014). Function of pretribosphenic and tribosphenic mammalian molars inferred from 3D animation. Naturwissenschaften, 101(10), 771–781.CrossRefGoogle Scholar
  120. Schultz, J. A., Krause, D. W., Koenigswald, W. von, & Dumont, E. R. (2014). Dental function and diet of Vintana Sertichi (Mammalia, Gondwanatheria) from the Late Cretaceous of Madagascar. Journal of Vertebrate Paleontology, 34(Suppl. 1), 182–202.Google Scholar
  121. Schulz, E., Calandra, I., & Kaiser, T. M. (2010). Applying tribology to teeth of hoofed mammals. Scanning, 32, 162–182.CrossRefGoogle Scholar
  122. Semprebon, G. M., Rivals, F., Solounias, N., & Hulbert, R. C. (2016). Paleodietary reconstruction of fossil horses from the Eocene through Pleistocene of North America. Palaeogeography, Palaeoclimatology, Palaeoecology, 442, 110–127.CrossRefGoogle Scholar
  123. Sheine, W. S., & Kay, R. F. (1982). A model for comparison of masticatory effectiveness in primates. Journal of Morphology, 172, 139–149.CrossRefGoogle Scholar
  124. Slavicek, G., Soykher, M., Gruber, H., Siegl, P., & Oxtoby, M. (2009). A novel standard food model to analyse the individual parameters of human mastication. International Journal of Stomatology & Occlusion Medicine, 2, 163–174.CrossRefGoogle Scholar
  125. Solounias, N., & Semprebon, G. M. (2002). Advances in the reconstruction of ungulate ecomorphology with application to early fossil equids. American Museum Novitates, 3366, 1–49.CrossRefGoogle Scholar
  126. Stirton, R. A. (1941). Development of characters in horse teeth and the dental nomenclature. Journal of Mammalogy, 22(4), 434–446.CrossRefGoogle Scholar
  127. Strömberg, C. A. E. (2006). Evolution of hypsodonty in equids: testing a hypothesis of adaptation. Paleobiology, 32(2), 236–258.CrossRefGoogle Scholar
  128. Thenius, E. (1989). Zähne und Gebiss der Säugetiere. Handbuch der Zoologie, Band VIII Mammalia, Teilband 56. Berlin: Walter de Gruyter & Co..Google Scholar
  129. Thewissen, J. G. M., & Domning, D. P. (1992). The role of phenacodontids in the origin of the modern orders of ungulate mammals. Journal of Vertebrate Paleontology, 12(4), 494–504.CrossRefGoogle Scholar
  130. Tütken, T., & Vennemann, T. (2009). Stable isoptope ecology of Miocene large mammals from Sandelzhausen, southern Germany. Paläontologische Zeitschrift, 83, 207–226.CrossRefGoogle Scholar
  131. Ungar, P. S., Teaford, M. F., Glander, K. E., & Pastor, R. F. (1995). Dust accumulation in the canopy: a potential cause of dental microwear in primates. American Journal of Physical Anthropology, 97, 93–99.CrossRefGoogle Scholar
  132. Wall, C. E., Vinyard, C. J., Johnson, K. R., Williams, S. H., & Hylander, W. L. (2006). Phase II jaw movements and masseter muscle activity during chewing in Papio anubis. American Journal of Physical Anthropology, 129, 215–224.CrossRefGoogle Scholar
  133. Wilde, V., & Hellmund, M. (2010). First record of gut contents from a middle Eocene equid from the Geiseltal near Halle (Saale), Sachsen-Anhalt, Central Germany. Palaeodiversity and Palaeoenvironment, 90, 153–162.CrossRefGoogle Scholar
  134. Winkler, D. E., & Kaiser, T. M. (2015). Uneven distribution of enamel in the tooth crown of a plains Zebra (Equus quagga). PeerJ, 3, e1002.CrossRefGoogle Scholar
  135. Wright, B. W., Ulibarri, L., O’Brian, J., Sadler, B., Prodhan, R., Covert, H. H., & Nadler, T. (2008). It's tough out there: variation in the toughness of ingested leaves and feeding behavior among four Colobinae in Vietnam. International Journal of Primatology, 29, 1455–1466.CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Senckenberg Forschungsinstitut und Naturmuseum Frankfurt a.M., Abteilung Paläoanthropologie und MesselforschungFrankfurtGermany
  2. 2.Steinmann-Institut für Geologie, Mineralogie und PaläontologieUniversität BonnBonnGermany
  3. 3.Department of Organismal Biology and AnatomyUniversity of ChicagoChicagoUSA

Personalised recommendations