Advertisement

A unique middle Miocene (Sarmatian) fish fauna from coastal deposits in the eastern Pannonian Basin (Romania)

  • Bettina Reichenbacher
  • Sorin Filipescu
  • Angela Miclea
Original Paper

Abstract

Based on a total of 161 otoliths, a unique teleost fauna is described from the middle Miocene in the eastern Pannonian Basin. The section studied is located near the Apuseni Mountains (Romania). It can be dated by the presence of foraminifera to the Varidentella reussi and Elphidium reginum biozones. The fish fauna is thus of late Serravallian/early Sarmatian age (around 12.3 Ma). Fourteen fish species were identified and assigned to Atherinidae (1 species), Valenciidae (2 species), Aphaniidae (1 species), Blenniidae (1 species) and Gobioidei (9 species). The assemblage includes several previously unknown species, and shares only two species with known Miocene ichthyofaunas. Seven new species are introduced: Atherina carnevalei n. sp., Aphanolebias sarmaticus n. sp., Blennius? martinii n. sp., Gobius apuseni n. sp., G. holcovae n. sp., G. manfredi n. sp. and Eleogobius prochazkai n. sp. Among the Gobiidae, G. apuseni n. sp. and G. holcovae n. sp. were small-sized species and perhaps restricted to the Sarmatian coast of the study site, whereas G. manfredi n. sp. also occurs in the northwestern Pannonian Basin. The fossil fish fauna indicates an early Sarmatian nearshore-to-brackish environment along a rocky coast on the northwestern flank of the Apuseni Mountains. A restricted connection to the Eastern Paratethys is possible, whereas there is no indication of a link with the Mediterranean Sea. The co-occurrence of nine species of the Gobioidei implies that this now very species-rich group was already reasonably diverse in the late middle Miocene.

Keywords

Serravallian Sarmatian Central Paratethys Otoliths Gobioidei Palaeoenvironment 

Notes

Acknowledgements

We gratefully acknowledge the constructive and detailed review comments of Giorgio Carnevale (Torino, Italy) and Dirk Nolf (Bruxelles, Belgium).

Funding information

BR acknowledges funding from the German Research Foundation (grant number RE 1113/20-1) and AM is grateful for the financial support of the project POSDRU/107/1.5/S/76841.

Compliance with ethical standards

Conflict of interest:

The authors declare that there is no conflict of interest.

References

  1. Agorreta, A., San Mauro, D., Schliewen, U., Van Tassell, J. L., Kovačić, M., Zardoya, R., et al. (2013). Molecular phylogenetics of Gobioidei and phylogenetic placement of European gobies. Molecular Phylogenetics and Evolution, 69(3), 619–633.  https://doi.org/10.1016/j.ympev.2013.07.017.CrossRefGoogle Scholar
  2. Arratia, G. (1999). The monophyly of Teleostei and stem-group teleosts. Consensus and disagreements. In G. Arratia & H.-P. Schultze (Eds.), Mesozoic fishes 2 - systematics and fossil record (pp. 265–334). München: Verlag Dr. Friedrich Pfeil.Google Scholar
  3. Bratishko, A., Kovalchuk, O., & Schwarzhans, W. (2017). Bessarabian (Tortonian, Late Miocene) fish otoliths from a transitional freshwater-brackish environment of Mykhailivka, Southern Ukraine. Palaeontologia Electronica, 20(3).Google Scholar
  4. Bleeker, P. (1874). Equisse d'un système naturel des Gobioides. Archives néerlandaises des sciences exactes et naturelles, 9(4), 289–331.Google Scholar
  5. Bratishko, A., Schwarzhans, W., Reichenbacher, B., Vernyhorova, Y., & Ćorić, S. (2015). Fish otoliths from the Konkian (Miocene, early Serravallian) of Mangyshlak (Kazakhstan): testimony to an early endemic evolution in the Eastern Paratethys. Paläontologische Zeitschrift, 89(4), 839–889.  https://doi.org/10.1007/s12542-015-0274-4.CrossRefGoogle Scholar
  6. Brzobohatý, R. (1994). Die Fischotolithen des Badenien von Gainfarn, Niederösterreich (Mittelmiozän, Wiener Becken). Annalen des Naturhistorischen Museums in Wien - Serie A (Mineralogie und Petrographie, Geologie und Paläontologie, Archäozoologie, Anthropologie und Prähistorie), 96, 67–93.Google Scholar
  7. Brzobohatý, R., Nolf, D., & Kroupa, O. (2007). Fish otoliths from the Middle Miocene of Kienberg at Mikulov, Czech Republic, Vienna Basin: their paleoenvironmental and paleogeographic significance. Bulletin de l'Institut Royal des Sciences Naturelles de Belgique: Sciences de la Terre, 77, 167–196.Google Scholar
  8. Brzobohatý, R., & Stancu, J. (1974). Die Fischfauna des Sarmatien s. str. In A. Papp, F. Marinescu, & J. Seneš (Eds.), Chronostratigraphie und Neostratotypen Miozän der zentralen Paratethys (Vol. VI, M5 Sarmatien, pp. 492–515). Bratislava: Veda.Google Scholar
  9. Çevik Üner, B., & Özkar Öngen, I. (2009). Investigation of Küçükçekmece (Istanbul) Sarmatian (Upper Miocene) fish otoliths. Istanbul Yerbilimleri Dergisi C, 22, 141–162.Google Scholar
  10. Chakrabarty, P., Davis, M. P., & Sparks, J. S. (2012). The first record of a trans-oceanic sister-group relationship between obligate vertebrate Troglobites. PLoS One, 7(8), e44083.  https://doi.org/10.1371/journal.pone.0044083.CrossRefGoogle Scholar
  11. Chalupová, B. (2008). Sarmatská rybia fauna z vrtu TPM-23B Smolenice (dunajská panva, Slovensko). Mineralia Slovaca, 40, 53–58.Google Scholar
  12. Ćorić, S., Pavelić, D., Rögl, F., Mandic, O., Vrabac, S., Avanić, R., et al. (2009). Revised Middle Miocene datum for initial marine flooding of North Croatian Basins (Pannonian Basin System, Central Paratethys). Geologia Croatica, 62(1), 31–43.CrossRefGoogle Scholar
  13. Day, F. (1872). Notes on the fish collected by Dr. Stoliczka in Kachi. Journal of the Asiatic Society of Bengal, 41(2), 258–260.Google Scholar
  14. De Raedemaecker, F., Miliou, A., & Perkins, R. (2010). Fish community structure on littoral rocky shores in the eastern Aegean Sea: Effects of exposure and substratum. Estuarine, Coastal and Shelf Science, 90(1), 35–44.  https://doi.org/10.1016/j.ecss.2010.08.007.CrossRefGoogle Scholar
  15. Djafarova, J. D. (2006). Otolity neogena Azerbaidjana (Neogene otoliths of Azerbaijan). Baku: Nafta.Google Scholar
  16. Ferreira, C. M., Coni, E. O. C., Medeiros, D. V., Sampaio, C. L. S., Reis-Filho, J. A., Barros, F., et al. (2015). Community structure of shallow rocky shore fish in a tropical bay of the southwestern Atlantic. Brazilian Journal of Oceanography, 63(4), 379–395.  https://doi.org/10.1590/s1679-87592015074706304.CrossRefGoogle Scholar
  17. Filipescu, S., Miclea, A., Gross, M., Harzhauser, M., Zagorsek, K., & Jipa, C. (2014). Early Sarmatian paleoenvironments in the easternmost Pannonian Basin (Borod Depression, Romania) revealed by the micropaleontological data. Geologica Carpathica, 65(1), 67–81.  https://doi.org/10.2478/geoca-2014-0005.CrossRefGoogle Scholar
  18. Gaudant, J., Barrón, E., Anadón, P., Reichenbacher, B., & Peñalver, E. (2015). Palaeoenvironmental analysis of the Miocene Arcas del Villar gypsum sequence (Spain), based on palynomorphs and cyprinodontiform fishes. Neues Jahrbuch für Geologie und Paläontologie ( Abhandlungen), 277(1), 105–124.  https://doi.org/10.1127/njgpa/2015/0503.CrossRefGoogle Scholar
  19. Gierl, C., Liebl, D., Šanda, R., Vukić, J., Esmaeili, H. R., & Reichenbacher, B. (accepted). What can goby otolith morphology tell us? Cybium. Google Scholar
  20. Gierl, C., & Reichenbacher, B. (2015). A new fossil genus of Gobiiformes from the Miocene characterized by a mosaic set of characters. Copeia, 103(4), 792–805.  https://doi.org/10.1643/ci-14-146.CrossRefGoogle Scholar
  21. Gill, A. C., & Mooi, R. D. (2012). Thalasseleotrididae, new family of marine gobioid fishes from New Zealand and temperate Australia, with a revised definition of its sister taxon, the Gobiidae (Teleostei: Acanthomorpha). Zootaxa, 3266, 41–52.Google Scholar
  22. Günther, A. (1861). Catalogue of the fishes in the British Museum. Catalogue of the acanthopterygian fishes in the collection of the British Museum (Vol. 3). London: British Museum of Natural History.Google Scholar
  23. Harzhauser, M., & Mandic, O. (2004). The muddy bottom of Lake Pannon—a challenge for dreissenid settlement (Late Miocene; Bivalvia). Palaeogeography Palaeoclimatology Palaeoecology, 204(3–4), 331–352.  https://doi.org/10.1016/s0031-0182(03)00735-1.CrossRefGoogle Scholar
  24. Harzhauser, M., & Piller, W. E. (2004). Integrated stratigraphy of the Sarmatian (Upper Middle Miocene) in the western Central Paratethys. Stratigraphy, 1(1), 65–86.Google Scholar
  25. Jost, J., Kälin, D., Börner, S., Vasilyan, D., Lawver, D., & Reichenbacher, B. (2015). Vertebrate microfossils from the Upper Freshwater Molasse in the Swiss Molasse Basin: Implications for the evolution of the North Alpine Foreland Basin during the Miocene Climate Optimum. Palaeogeography, Palaeoclimatology, Palaeoecology, 426, 22–33.  https://doi.org/10.1016/j.palaeo.2015.02.028.CrossRefGoogle Scholar
  26. Jost, J., Kälin, D., Schulz-Mirbach, T., & Reichenbacher, B. (2006). Late Early Miocene lake deposits near Mauensee, central Switzerland: fish fauna (otoliths, teeth), accompanying biota and palaeoecology. Eclogae Geologicae Helvetiae, 99(3), 309–326.  https://doi.org/10.1007/s00015-006-1198-5.CrossRefGoogle Scholar
  27. Kováč, M., Hudáčková, N., Halásová, E., Kováčová, M., Holcová, K., Oszczypko-Clowes, M., et al. (2017). The Central Paratethys palaeoceanography: a water circulation model based on microfossil proxies, climate, and changes of depositional environment. Acta Geologica Slovaca, 9(2).Google Scholar
  28. Miller, P. J. (1973). The osteology and adaptive features of Rhyacichthys aspro (Teleostei: Gobioidei) and the classification of gobioid fishes. Journal of Zoology, 171(3), 397–434.Google Scholar
  29. Nelson, J. S., Grande, T. C., & Wilson, M. V. H. (2016). Fishes of the world (5th ed.). Hoboken: Wiley.CrossRefGoogle Scholar
  30. Neubauer, T. A., Harzhauser, M., Mandic, O., Kroh, A., & Georgopoulou, E. (2016). Evolution, turnovers and spatial variation of the gastropod fauna of the late Miocene biodiversity hotspot Lake Pannon. Palaeogeography Palaeoclimatology Palaeoecology, 442, 84–95.  https://doi.org/10.1016/j.palaeo.2015.11.016.CrossRefGoogle Scholar
  31. Nolf, D. (1981). Révision des Types d'Otolithes de Poissons Fossiles décrits par R. Schubert. Verhandlungen der Geologischen Bundesanstalt, 1981(2), 133–183.Google Scholar
  32. Nolf, D. (2013). The diversity of fish otoliths, past and present. Brussels: Royal Belgian Institute of Natural Sciences.Google Scholar
  33. Nolf, D., & Brzobohatý, R. (2009). Lower Badenian fish otoliths of the Styrian and Lavanttal basins, with a revision of WEINFURTER's type material. Annalen des Naturhistorischen Museums in Wien - Serie A (Mineralogie und Petrographie, Geologie und Paläontologie, Archäozoologie, Anthropologie und Prähistorie), 111, 323–356.Google Scholar
  34. Nolf, D., & Steurbaut, E. (1979). Les otolithes de Téléostéens des faluns Sallomaciens d'Orthez et de Sallespisse (Miocène moyen d'Aquitaine méridionale, France). Palaeontographica Abteilung A: Paläozoologie – Stratigraphie, 64(1–3), 1–23.Google Scholar
  35. Paghida, N. (1962). Otolitele din Buglovianul Podişului Moldovenesc. Analele Universităţii “Al. I. Cuza” din Iaşi - Seria Geologie (AUI-G), 8, 13–20.Google Scholar
  36. Palcu, D. V., Golovina, L. A., Vernyhorova, Y. V., Popov, S. V., & Krijgsman, W. (2017). Middle Miocene paleoenvironmental crises in Central Eurasia caused by changes in marine gateway configuration. Global and Planetary Change, 158, 57–71.  https://doi.org/10.1016/j.gloplacha.2017.09.013.CrossRefGoogle Scholar
  37. Palcu, D. V., Tulbure, M., Bartol, M., Kouwenhoven, T. J., & Krijgsman, W. (2015). The Badenian–Sarmatian extinction event in the Carpathian foredeep basin of Romania: Paleogeographic changes in the Paratethys domain. Global and Planetary Change, 133(Supplement C), 346–358.  https://doi.org/10.1016/j.gloplacha.2015.08.014.CrossRefGoogle Scholar
  38. Peryt, T. M. (2006). The beginning, development and termination of the Middle Miocene Badenian salinity crisis in Central Paratethys. Sedimentary Geology, 188, 379–396.Google Scholar
  39. Piller, W. E., & Harzhauser, M. (2005). The myth of the brackish Sarmatian Sea. Terra Nova, 17(5), 450–455.  https://doi.org/10.1111/j.1365-3121.2005.00632.x.CrossRefGoogle Scholar
  40. Pobedina, V. M. (1954). Iskopaemye otolity ryb miocenovyh otlozheniy Azerbaijana i ih stratigraficheskoe znachenie (Fossil fish otoliths from the Miocene deposits of Azerbaijan and their stratigraphical significance). Izvestia Akademii Nauk Azerbaidjanskoy SSR, 10, 23–37.Google Scholar
  41. Pobedina, V. M., Voroshilova, A. G., Rybina, O. I., & Kuznetsova, Z. V. (1956). Spravochnik po mikrofaune sredne—i verkhnemiocenovykh otlozhenii Azerbaidjana (Handbook about microfauna Middle and Upper Miocene deposits of Azerbaijan). Baku: Azerbaidjanskoe gosudarstvennoe izdatelstvo neftyanoi nauchno-tekhnicheskoy literatury.Google Scholar
  42. Procházka, V. J. (1893). Das Miocaen von Seelowitz in Mähren und dessen Fauna. Rozpravy Ceské Akademie Cisare Frantiska Josefa pro Vedy Slovesnost a Umeni v Praze, 2(24), 1–90.Google Scholar
  43. Procházka, V. J. (1900). Das ostböhmische Miocaen. Archiv für die naturwissenschaftliche Durchforschung Böhmens (Geologische Section), 10(2), 1–173.Google Scholar
  44. Rado, G. (1965). Otolite din depozitele Tortoniene de la Coșteiul de Sus. Analele Universității București, Seria științele naturii, Geologie, 14, 55–71.Google Scholar
  45. Rado, G. (1968). Étude des otolithes sarmatiens de Copăcel-Chijic (Bassin du Crișul Repede). Travaux du Muséum National d'Histoire Naturelle "Grigore Antipa", 8, 581–585.Google Scholar
  46. Rado, G. (1981). Otolite din depozitele Langhiene (Badenian inferior) de la Lăpugiul de Sus. Analele Universității București. Geologie, 30, 29–46.Google Scholar
  47. Radwańska, U. (1992). Fish otoliths in the Middle Miocene (Badenian) deposits of southern Poland. Acta Geologica Polonica, 42(3–4), 141–328.Google Scholar
  48. Reichenbacher, B. (1993). Mikrofaunen, Paläogeographie und Biostratigraphie der miozänen Brack- und Süßwassermolasse in der westlichen Paratethys unter besonderer Berücksichtigung der Fisch-Otolithen. Senckenbergiana lethaea, 73(2), 277–374.Google Scholar
  49. Reichenbacher, B. (1998). Fisch-Otolithen aus dem Karpat des Korneuburger Beckens. Beiträge zur Paläontologie Österreichs, 23, 325–345.Google Scholar
  50. Reichenbacher, B. (2000). Das brackisch-lakustrine Oligozän und Unter-Miozän im Mainzer Becken und Hanauer Becken: Fischfaunen, Paläoökologie, Biostratigraphie, Paläogeographie. Courier Forschungsinstitut Senckenberg, 222, 1–143.Google Scholar
  51. Reichenbacher, B., & Cappetta, H. (1999). First evidence of an early Miocene marine teleostean fish fauna (otoliths) from La Paillade (Montpellier, France). Palaeovertebrata, 28(1), 1–46.Google Scholar
  52. Reichenbacher, B., Feulner, G. R., & Schulz-Mirbach, T. (2009). Geographic variation in otolith morphology among freshwater populations of Aphanius dispar (Teleostei, Cyprinodontiformes) from the southeastern Arabian peninsula. Journal of Morphology, 270(4), 469–484.  https://doi.org/10.1002/jmor.10702.CrossRefGoogle Scholar
  53. Reichenbacher, B., & Gaudant, J. (2003). On Prolebias meyeri (Agassiz) (Teleostei, Cyprinodontiformes) from the Oligo-Miocene of the Upper Rhinegraben area, with the establishment of a new genus and a new species. Eclogae Geologicae Helvetiae, 96(3), 509–520.  https://doi.org/10.1007/s00015-003-1098-x.Google Scholar
  54. Reichenbacher, B., & Kowalke, T. (2009). Neogene and present-day zoogeography of killifishes (Aphanius and Aphanolebias) in the Mediterranean and Paratethys areas. Palaeogeography, Palaeoclimatology, Palaeoecology, 281(1–2), 43–56.  https://doi.org/10.1016/j.palaeo.2009.07.008.CrossRefGoogle Scholar
  55. Rückert-Ülkümen, N. (1996). Weitere Beiträge zur Otolithenfauna von Avcılar W Küçükçekmece See (Thrakien, Türkei). Mitteilungen der Bayerischen Staatssammlung für Paläontologie und Historische. Geologie, 36, 117–133.Google Scholar
  56. Rückert-Ülkümen, N. (2006). Otolithen aus dem Mio-Pliozän von Yalova bei Istanbul, Türkei. Neues Jahrbuch für Geologie und Paläontologie (Monatsheft), 10, 577–594.Google Scholar
  57. Rückert-Ülkümen, N., & Kaya, O. (1993). Neue Beiträge zur Tertiär-Stratigraphie und Otolithenfauna der Umgebung von Istanbul (Küçükçekmece- und Büyükçekmece See), Türkei. Mitteilungen. Bayerische Staatssammlung für Paläontologie und Historische Geologie, 33, 51–89.Google Scholar
  58. Rüppell, E. (1828). Atlas zu der Reise im nördlichen Afrika. Fische des rothen Meers. Frankfurt am Main: Heinr. Ludw. Brönner.Google Scholar
  59. Schmid, S. M., Bernoulli, D., Fuegenschuh, B., Matenco, L., Schefer, S., Schuster, R., et al. (2008). The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss Journal of Geosciences, 101(1), 139–183.  https://doi.org/10.1007/s00015-008-1247-3.CrossRefGoogle Scholar
  60. Schubert, R. J. (1906). Die Fischotolithen des österr.-ungar. Tertiärs. III. Jahrbuch der kaiserlich-königlichen geologischen Reichsanstalt, 56, 623–706.Google Scholar
  61. Schubert, R. J. (1912). Die Fischotolithen der ungarischen Tertiärablagerungen. Mitteilungen aus dem Jahrbuche der kgl. ungarischen geologischen Reichsanstalt, 20(3), 115–139.Google Scholar
  62. Schwarzhans, W. (2010). The otoliths from the Miocene of the North Sea Basin (1. ed., The otoliths from the Miocene of the North Sea Basin). Weikersheim: Backhuys Publishers, Leiden & Margraf Publishers.Google Scholar
  63. Schwarzhans, W. (2014). Otoliths from the middle Miocene (Serravallian) of the Karaman Basin, Turkey. Cainozoic Research, 14(1), 35–69.Google Scholar
  64. Schwarzhans, W. (2017). A review of otoliths collected by W. Weiler from the Badenian of Romania and by B. Strashimirov from Badenian equivalents of Bulgaria. Cainozoic Research, 17(2), 167–191.Google Scholar
  65. Schwarzhans, W., Ahnelt, H., Carnevale, G., Japundžić, S., Bradić, K., & Bratishko, A. (2017a). Otoliths in situ from Sarmatian (Middle Miocene) fishes of the Paratethys. Part III: tales from the cradle of the Ponto-Caspian gobies. Swiss Journal of Palaeontology, 136(1), 45–92.  https://doi.org/10.1007/s13358-016-0120-7.CrossRefGoogle Scholar
  66. Schwarzhans, W., Bradić, K., & Rundić, L. (2015). Fish-otoliths from the marine-brackish water transition from the Middle Miocene of the Belgrade area, Serbia. Paläontologische Zeitschrift, 89(4), 815–837.  https://doi.org/10.1007/s12542-015-0272-6.CrossRefGoogle Scholar
  67. Schwarzhans, W., Carnevale, G., Bannikov, A. F., Japundžić, S., & Bradić, K. (2017b). Otoliths in situ from Sarmatian (Middle Miocene) fishes of the Paratethys. Part I: Atherina suchovi Switchenska, 1973. Swiss Journal of Palaeontology, 136(1), 7–17.  https://doi.org/10.1007/s13358-015-0111-0.CrossRefGoogle Scholar
  68. Silye, L., & Filipescu, S. (2016). Comment on “The Badenian–Sarmatian extinction event in the Carpathian foredeep basin of Romania: paleogeographic changes in the Paratethys domain” (Palcu et al., 2015). Global and Planetary Change, 145(Supplement C), 17–19.  https://doi.org/10.1016/j.gloplacha.2016.08.008.CrossRefGoogle Scholar
  69. Śmigielska, T. (1966). Otolity Ryb z Tortonu Południowej Polski. Roczink Polskiego Towarzystwa Geologicznego - Annales de la Société géologique de Pologne, 36(3), 205–275.Google Scholar
  70. Śmigielska, T. (1973). Fish otoliths from the Lower Tortonian deposits at Niskowa near Novy Sącz. Annales de la Société géologique de Pologne, 43(1), 3–40.Google Scholar
  71. Springer, V. G. (1993). Definition of the suborder Blennioidei and its included families (Pisces: Perciformes). Bulletin of Marine Science, 52(1), 472–495.Google Scholar
  72. Steurbaut, E. (1979). Les otolithes de téléostéens des Marnes de Saubrigues (Miocène d'Aquitaine méridionale, France). Palaeontographica Abteilung A Palaeozoologie-Stratigraphie, 166(1–3), 50–91.Google Scholar
  73. Steurbaut, E. (1984). Teleostean otoliths from the Oligo-Miocene from Aquitaine Southwestern France. Palaeontographica Abteilung A: Paläozoologie - Stratigraphie, 186(1–6), 1–162.Google Scholar
  74. Strashimirov, B. (1972). Otolity ot tarkhana na Severoistochna Bulgaria. Annuaire de l'Ecole Supérieure des Mines et de Geologie, Sofia, 18(2), 301–313.Google Scholar
  75. Strashimirov, B. (1980). Otolithes du Tchokrakien de la Bulgarie nord-orientale. Geologica Balcanica, 10(2), 61–70.Google Scholar
  76. Strashimirov, B. (1981a). Otolity ot karagana na Severoistochna Bulgaria. Palaeontology, Stratigraphy and Lithology, 14, 19–28.Google Scholar
  77. Strashimirov, B. (1981b). Otolity ot konka na Severoistochna Bulgaria. Palaeontology, Stratigraphy and Lithology, 15, 52–65.Google Scholar
  78. Strashimirov, B. (1982). Otolity ot badena na Bulgaria. Palaeontology, Stratigraphy and Lithology, 17, 13–37.Google Scholar
  79. Strashimirov, B. (1984). Otolity ot dolnia sarmat na Severnaia Bulgaria. Palaeontology, Stratigraphy and Lithology, 20, 15–41.Google Scholar
  80. Strashimirov, B. (1985a). Otolity ot gornia sarmat na Severozapadna Bulgaria. Annual of the Highest Institute of Mining and Geology Sofia, 31, 21–36.Google Scholar
  81. Strashimirov, B. (1985b). Otolity ot srednia sarmat na Severnaia Bulgaria. Annual of the Highest Institute of Mining and Geology Sofia, 31, 7–20.Google Scholar
  82. Teimori, A., Esmaeili, H. R., Hamidan, N., & Reichenbacher, B. (2018). Systematics and historical biogeography of the Aphanius dispar species group (Teleostei: Aphaniidae) and description of a new species from Southern Iran. Journal of Zoological Systematics and Evolutionary Research, online first.  https://doi.org/10.1111/jzs.12228.
  83. Teimori, A., Jawad, L. A. J., Al-Kharusi, L. H., Al-Mamry, J. M., & Reichenbacher, B. (2012a). Late Pleistocene to Holocene diversification and historical zoogeography of the Arabian killifish (Aphanius dispar) inferred from otolith morphology. Scientia Marina, 76(4), 637–645.  https://doi.org/10.3989/scimar.03635.26C.Google Scholar
  84. Teimori, A., Schulz-Mirbach, T., Esmaeili, H. R., & Reichenbacher, B. (2012b). Geographical differentiation of Aphanius dispar (Teleostei: Cyprinodontidae) from Southern Iran. Journal of Zoological Systematics and Evolutionary Research, 50(4), 289–304.  https://doi.org/10.1111/j.1439-0469.2012.00667.x.CrossRefGoogle Scholar
  85. ter Borgh, M., Stoica, M., Donselaar, M. E., Matenco, L., & Krijgsman, W. (2014). Miocene connectivity between the Central and Eastern Paratethys: Constraints from the western Dacian Basin. Palaeogeography Palaeoclimatology Palaeoecology, 412, 45–67.  https://doi.org/10.1016/j.palaeo.2014.07.016.CrossRefGoogle Scholar
  86. Thacker, C. E. (2003). Molecular phylogeny of the gobioid fishes (Teleostei: Perciformes: Gobioidei). Molecular Phylogenetics and Evolution, 26(3), 354–368.  https://doi.org/10.1016/s1055-7903(02)00361-5.CrossRefGoogle Scholar
  87. Thacker, C. E. (2009). Phylogeny of Gobioidei and placement within Acanthomorpha, with a new classification and investigation of diversification and character evolution. Copeia, 2009(1), 93–104.  https://doi.org/10.1643/Ci-08-004.CrossRefGoogle Scholar
  88. Thacker, C. E. (2013). Phylogenetic placement of the European sand gobies in Gobionellidae and characterization of gobionellid lineages (Gobiiformes: Gobioidei). Zootaxa, 3619(3), 369–382.CrossRefGoogle Scholar
  89. Thacker, C. E. (2015). Biogeography of goby lineages (Gobiiformes: Gobioidei): origin, invasions and extinction throughout the Cenozoic. Journal of Biogeography, 42(9), 1615–1625.  https://doi.org/10.1111/jbi.12545.CrossRefGoogle Scholar
  90. Thacker, C. E., & Roje, D. M. (2011). Phylogeny of Gobiidae and identification of gobiid lineages. Systematics and Biodiversity, 9(4), 329–347.  https://doi.org/10.1080/14772000.2011.629011.CrossRefGoogle Scholar
  91. Thacker, C. E., Satoh, T. P., Katayama, E., Harrington, R. C., Eytan, R. I., & Near, T. J. (2015). Molecular phylogeny of Percomorpha resolves Trichonotus as the sister lineage to Gobioidei (Teleostei: Gobiiformes) and confirms the polyphyly of Trachinoidei. Molecular Phylogenetics and Evolution, 93, 172–179.  https://doi.org/10.1016/j.ympev.2015.08.001.CrossRefGoogle Scholar
  92. Tornabene, L., Chen, Y. J., & Pezold, F. (2013). Gobies are deeply divided: phylogenetic evidence from nuclear DNA (Teleostei: Gobioidei: Gobiidae). [article]. Systematics and Biodiversity, 11(3), 345–361.CrossRefGoogle Scholar
  93. Tornabene, L. M. (2014). Patterns of evolution in gobies (Teleostei: Gobiidae): a multi-scale phylogenetic investigation. Corpus Christi: Texas A&M University Corpus Christi.Google Scholar
  94. Tuset, V. M., Lombarte, A., & Assis, C. A. (2008). Otolith atlas for the western Mediterranean, north and central eastern Atlantic. Scientia Marina, 72(S1), 7–198.Google Scholar
  95. Weiler, W. (1943). Die Otolithen aus dem Jungtertiär Süd-Rumäniens. 1. Buglow und Sarmat. Senckenbergiana, 26(1/3), 87–115.Google Scholar
  96. Weiler, W. (1949). Die Otolithen aus dem Jung-Tertiär Süd-Rumäniens. 1b. Ergänzende Tafeln zu den Otolithen des Buglow und Sarmat. Senckenbergiana, 30(4/6), 291–293.Google Scholar
  97. Weiler, W. (1950). Die Otolithen aus dem Jung-Tertiär Süd-Rumäniens. 2. Mittel-Miozän, Torton, Buglow und Sarmat. Senckenbergiana, 31(3/4), 209–258.Google Scholar
  98. Weiler, W. (1963). Die Fischfauna des Tertiärs im oberrheinischen Graben, des Mainzer Beckens, des unteren Maintals und der Wetterau, unter besonderer Berücksichtigung des Untermiozäns. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft, 504, 1–75.Google Scholar
  99. Weinfurter, E. (1952a). Die Otolithen aus dem Torton (Miozän) von Mühldorf in Kärnten. Sitzungsberichte der Akademie der Wissenschaften in Wien, mathematisch-naturwissenschaftliche Klasse. Abteilung, 1(161), 149–172.Google Scholar
  100. Weinfurter, E. (1952b). Otolithen aus miozänen Brack- und Süßwasserschichten des Lavanttales in Kärnten. Sitzungsberichte der Akademie der Wissenschaften in Wien, mathematisch-naturwissenschaftliche Klasse. Abteilung, 1(161), 141–148.Google Scholar
  101. Weinfurter, E. (1967). Die miozäne Otolithenfauna von St. Veit an der Triesting, NÖ. Annalen des Naturhistorischen Museums Wien, 71, 381–393.Google Scholar
  102. Wildekamp, R. H. (1993). A world of killies: atlas of the oviparous cyprinodontiform fishes of the world (Vol. I). Mishawaka: American Killifish Association.Google Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Bettina Reichenbacher
    • 1
  • Sorin Filipescu
    • 2
  • Angela Miclea
    • 2
  1. 1.Department of Earth and Environmental Sciences, Palaeontology and GeobiologyLudwig Maximilians UniversityMunichGermany
  2. 2.Department of GeologyBabeş-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations