Advertisement

PalZ

pp 1–5 | Cite as

A chasmataspidid affinity for the putative xiphosuran Kiaeria Størmer, 1934

  • James C. LamsdellEmail author
Short Communication

Abstract

The putative xiphosuran Kiaeria Størmer, 1934, from the Late Silurian (Ludlow) of Ringerike, Norway, is redescribed from the holotype and only known specimen as a chasmataspidid chelicerate arthropod. Morphological features such as the presence of a fused buckler of three opisthosomal segments clearly indicate a chasmataspidid affinity, while the size of Kiaeria, along with the occurrence of a raised axial region and expanded anterior articulation, suggest a close phylogenetic relationship to the Ordovician Chasmataspis. As such, Kiaeria represents the first indication that the Chasmataspis-type chasmataspidid morphology persisted alongside the radiation of diploaspidids. This is also only the third chasmataspidid species recorded from the Silurian.

Keywords

Chasmataspidida Chelicerata Kiaeria Kiaeritia Ringerike 

Notes

Acknowledgements

I thank Hans Nakrem (PMO) for providing images of Kiaeria, and Kathy Hollis (NMNH) for facilitating loans of the Chasmataspis material. I am especially grateful to Jason Dunlop (Berlin) and Mike Reich (Munich) for detailed and invaluable reviews that helped resolve the taxonomic situation of Kiaeria.

References

  1. Abushik, A.F., R.B. Blodgett, and V.V. Baranov. 2016. The first early Lochkovian ostracods in redbeds of the Karheen Formation of Prince of Wales Island (Southeast Alaska). New Mexico Museum of Natural History and Science Bulletin 74: 1–4.Google Scholar
  2. Anderson, L.I., M. Poschmann, and C. Brauckmann. 1998. On the Emsian (Lower Devonian) arthropods of the Rhenish Slate Mountains: 2. The synziphosurine Willwerathia. Paläontologische Zeitschrift 72: 325–336.CrossRefGoogle Scholar
  3. Babcock, L.E., D.F. Merriam, and R.R. West. 2000. Paleolimulus, an early limuline (Xiphosurida), from Pennsylvanian-Permian Lagerstätten of Kansas and taphonomic comparison with modern Limulus. Lethaia 33: 129–141.CrossRefGoogle Scholar
  4. Botting, J.P. 2007. Algae, receptaculitids and sponges. In Silurian fossils of the Pentland Hills, Scotland, eds. E.N.K. Clarkson, D.A.T. Harper, C.M. Taylor, and L.I. Anderson, 36–49. London: The Palaeontological Association.Google Scholar
  5. Burmeister, H. 1843. Die Organisation der Trilobiten, aus ihren lebenden Verwandten entwickelt; nebst einer systematische Uebersicht aller zeither beschriebenen Arten, 1–148. Berlin: G. Reimer.Google Scholar
  6. Caster, K.E., and H.K. Brooks. 1956. New fossils from the Canadian-Chazyan (Ordovician) hiatus in Tennessee. Bulletins of American Paleontology 157: 157–199.Google Scholar
  7. Caster, K.E., and E.N. Kjellesvig-Waering. 1955. Marsupipterus, an unusual eurypterid from the Downtonian of England. Journal of Paleontology 29: 1040–1041.Google Scholar
  8. Chlupáč, I. 1965. Xiphosuran merostomes from the Bohemian Ordovician. Sborník Geologických Věd 5: 22–27.Google Scholar
  9. Davies, N.S., I.J. Sansom, and P. Turner. 2003. Trace fossils and paleoenvironments of a Late Silurian marginal-marine/alluvial system: the Ringerike Group (Lower Old Red Sandstone), Oslo Region, Norway. Palaios 21: 46–62.CrossRefGoogle Scholar
  10. Dunlop, J.A., and J.C. Lamsdell. 2017. Segmentation and tagmosis in Chelicerata. Arthropod Structure and Development 46: 395–418.CrossRefGoogle Scholar
  11. Dunlop, J.A., M. Poschmann, and L.I. Anderson. 2001. On the Emsian (Early Devonian) arthropods of the Rhenish Slate Mountains. 3: The chasmataspidid Diploaspis. Paläontologische Zeitschrift 75: 253–269.CrossRefGoogle Scholar
  12. Dunlop, J.A., L.I. Anderson, and S.J. Braddy. 2004. A redescription of Chasmataspis laurencii Caster and Brooks, 1956 (Chelicerata: Chasmataspidida) from the Middle Ordovician of Tennessee, USA, with remarks on chasmataspid phylogeny. Transactions of the Royal Society of Edinburgh: Earth Sciences 94: 205–207.Google Scholar
  13. Feldmann, R.M., C.E. Schweitzer, B. Dattilo, and J.O. Farlow. 2011. Remarkable preservation of a new genus and species of limuline horseshoe crab from the Cretaceous of Texas, USA. Palaeontology 54: 1337–1346.CrossRefGoogle Scholar
  14. Glebowskaja, E.M. 1949. Otrjad Ostracoda. Rakovinčatye raki. Atlas rukovodjaščich form iskopaemych faun SSSR 2: 261–268, 338, 367–368.Google Scholar
  15. Heymons, R. 1901. Die Entwicklungsgeschichte der Scolopender. Zoologica 33: 1–244.Google Scholar
  16. Johnson, M.E., and B.G. Baarli. 2012. Development of intertidal biotas through Phanerozoic time. In Earth and life, ed. J.A. Talent, 63–128. Berlin: Springer.CrossRefGoogle Scholar
  17. Kiær, J. 1911. A new Downtonian fauna in the sandstone series of the Kristiana area: a preliminary report. Skrifter ugitt av Det Norske Videnskaps-Akademi i Oslo I. Matematisk-Naturvidenskapelig Klasse 7: 1–22.Google Scholar
  18. Kiær, J. 1924. The Downtonian fauna of Norway. I. Anaspida. Skrifter ugitt av Det Norske Videnskaps-Akademi i Oslo I. Matematisk-Naturvidenskapelig Klasse 6: 1–139.Google Scholar
  19. Lamsdell, J.C. 2013a. Revised systematics of Palaeozoic ‘horseshoe crabs’ and the myth of monophyletic Xiphosura. Zoological Journal of the Linnean Society 167: 1–27.CrossRefGoogle Scholar
  20. Lamsdell, J.C. 2013b. Redescription of Drepanopterus pentlandicus Laurie, 1892, the earliest known mycteropoid (Chelicerata: Eurypterida) from the early Silurian (Llandovery) of the Pentland Hills, Scotland. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 103: 77–103.CrossRefGoogle Scholar
  21. Lamsdell, J.C. 2016. Horseshoe crab phylogeny and independent colonizations of fresh water: ecological invasion as a driver for morphological innovation. Palaeontology 59: 181–194.CrossRefGoogle Scholar
  22. Lamsdell, J.C., and D.E.G. Briggs. 2017. The first diploaspidid (Chelicerata: Chasmataspidida) from North America (Silurian, Bertie Group, New York State) is the oldest species of Diploaspis. Geological Magazine 154: 175–180.CrossRefGoogle Scholar
  23. Lamsdell, J.C., and S.C. McKenzie. 2015. Tachypleus syriacus (Woodward)—a sexually dimorphic Cretaceous crown limulid reveals underestimated horseshoe crab divergence times. Organisms Diversity and Evolution 15: 681–693.Google Scholar
  24. Lamsdell, J.C., D.E.G. Briggs, H.P. Liu, B.J. Witzke, and R.M. McKay. 2015. A new Ordovician arthropod from the Winneshiek Lagerstätte of Iowa (USA) reveals the ground plan of eurypterids and chasmataspidids. The Science of Nature 102: 63.CrossRefGoogle Scholar
  25. Lamsdell, J.C., G.O. Gunderson, and R.C. Meyer. 2019. A common arthropod from the Late Ordovician Big Hill Lagerstätte (Michigan) reveals an unexpected ecological diversity within Chasmataspidida. BMC Evolutionary Biology 19: 8.CrossRefGoogle Scholar
  26. Latreille, P. 1802. Histoire naturelle, générale et particulière, des Crustacés et des Insectes, vol. 3, 1–467. Paris: Dufart.Google Scholar
  27. Latreille, P.A. 1810. Considérations générales sur l’ordre natural des animaux composant les classes des crustacés, des arachnids et des insects, 1–444. Paris: F. Schoell.Google Scholar
  28. Lomax, D.R., J.C. Lamsdell, and S.J. Ciurca Jr. 2011. A collection of eurypterids from the Silurian of Lesmahagow collected pre 1900. The Geological Curator 9: 331–348.Google Scholar
  29. Marshall, D.J., J.C. Lamsdell, E. Shpinev, and S.J. Braddy. 2014. A diverse chasmataspidid (Arthropoda: Chelicerata) fauna from the early Devonian (Lochkovian) of Siberia. Palaeontology 57: 631–655.CrossRefGoogle Scholar
  30. Ortega-Hernández, J., R. Lerosey-Aubril, C. Kier, and E. Bonino. 2015. A rare non-trilobite artiopodan from the Guzhangian (Cambrian Series 3) Weeks Formation Konservat-Lagerstätte in Utah, USA. Palaeontology 58: 265–276.CrossRefGoogle Scholar
  31. Poschmann, M., L.I. Anderson, and J.A. Dunlop. 2005. Chelicerate arthropods, including the oldest phalangiotarbid arachnid, from the Early Devonian (Siegenian) of the Rhenish Massif, Germany. Journal of Paleontology 79: 110–124.CrossRefGoogle Scholar
  32. Rudkin, D.M., G.A. Young, and G.S. Nowlan. 2008. The oldest horseshoe crab: a new xiphosurid from Late Ordovician Konservat-Lagerstätten deposits, Manitoba, Canada. Palaeontology 51: 1–9.CrossRefGoogle Scholar
  33. Schallreuter, R., and I. Hinz-Schallreuter. 1999. Altpaläozoische Ostrakoden mit Stoppern. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1999: 227–242.Google Scholar
  34. Schram, F.R. 1984. Upper Pennsylvanian arthropods from black shales of Iowa and Nebraska. Journal of Paleontology 58: 197–209.Google Scholar
  35. Siebold, C.T. von. 1848. Lehrbuch der vergleichenden Anatomie der wirbellosen Thiere, xiv + 679. Berlin: Veit & Comp.Google Scholar
  36. Selden, P.A., J.C. Lamsdell, and L. Qi. 2015. An unusual euchelicerate linking horseshoe crabs and eurypterids, from the Lower Devonian (Lochkovian) of Yunnan, China. Zoologica Scripta 44: 645–652.CrossRefGoogle Scholar
  37. Siveter, D.J., and P.A. Selden. 1987. A new, giant xiphosurid from the lower Namurian of Weardale, County Durham. Proceedings of the Yorkshire Geological Society 46: 153–168.CrossRefGoogle Scholar
  38. Størmer, L. 1934. Merostomata from the Downtonian Sandstone of Ringerike, Norway. Skrifter utgitt av Det Norske Videnskaps-Akademi i Oslo I. Matematisk-Naturvidenskapelig Klasse 10: 1–125.Google Scholar
  39. Størmer, L. 1936. Eurypteriden aus dem Rheinischen Unterdevon. Abhandlungen der Preußischen Geologischen Landesanstalt, Neue Folge 175: 1–74.Google Scholar
  40. Tetlie, O.E., and S.J. Braddy. 2004. The first Silurian chasmataspid, Loganamaraspis dunlopi gen. et sp. nov. (Chelicerata: Chasmataspidida) from Lesmahagow, Scotland, and its implications for eurypterid phylogeny. Transactions of the Royal Society of Edinburgh: Earth Sciences 94: 227–234.CrossRefGoogle Scholar
  41. Weygoldt, P., and H.F. Paulus. 1979. Untersuchungen zur Morphologie, Taxonomie und Phylogenie der Chelicerata. Zeitschrift für Zoologische Systematik und Evolutionsforschung 17: 85–116, 117–120.Google Scholar

Copyright information

© Paläontologische Gesellschaft 2019

Authors and Affiliations

  1. 1.Department of Geology and GeographyWest Virginia UniversityMorgantownUSA

Personalised recommendations