Advertisement

PalZ

pp 1–13 | Cite as

A new anatomically preserved Alloiopteris fern from Moscovian (Bolsovian) volcanoclastics of Flöha (Flöha Basin, SE Germany)

  • Josef PšeničkaEmail author
  • Ronny Rößler
  • Jana Frojdová
  • Stanislav Opluštil
  • Mathias Merbitz
Research Paper

Abstract

The morphology and anatomy of a new zygopterid fern are described from the Middle Pennsylvanian (Bolsovian) of Flöha, SE Germany. The fossils occur as allochthonous remains within the basal Schweddey Ignimbrite, which preserves a diverse wetland plant community of cordaitaleans, ferns, pteridosperms, calamitaleans, and lycophytes. Pinnae of Alloiopteris loecsei sp. nov. exhibit a combined carbonized and anatomical preservation type due to rapid entombment in fine-grained pyroclastics. The newly collected Alloiopteris fossils show typical gross morphology, but also reveal the anatomy of penultimate and ultimate rachides. The affinity of the new fern is discussed amongst zygopterids in general and the famous zygopterid stems Zygopteris primaria (von Cotta) Corda and Asterochlaena laxa Stenzel from the Flöha site in particular. Our investigation highlights the striking potential of pyroclastic deposits for preserving and yielding both morphological and three-dimensional anatomical aspects of plant fossils.

Keywords

Pennsylvanian Plant anatomy Volcanic taphonomy Zygopterid ferns Palaeoecology 

Notes

Acknowledgements

This contribution is dedicated to Hans Kerp, Münster, on the occasion of his 65th birthday. We would like to thank him for his always encouraging spirit. Furthermore, we are indebted to Frank Löcse, Uhlsdorf, for his stimulating enthusiasm, guidance during fieldwork activities, helpful discussions and providing Fig. 1. Jean Galtier, Montpellier, is gratefully acknowledged for discussion and providing additional references. Finally, we would like to thank Arden Bashforth and an anonymous reviewer and the editors Benjamin Bomfleur and Mike Reich for their help and constructive comments. This research was partly supported by a Visiting Professorship for Senior International Scientists of the Chinese Academy of Sciences (Grant 2016vea004 to JP), by the Deutsche Forschungsgemeinschaft (DFG grant RO 1273/4-1 to RR) and the research program of the Institute of Geology of the Czech Academy of Sciences (RVO67985831). We welcomed the constructive advice and suggestions by A. Arden R. Bashforth, Benjamin Bomfleur and one anonymous journal reviewer and cordially thank them.

References

  1. Alvarez Ramis, C., J. Doubinger, and R. Germer. 1979. Die sphenopteridischen Gewächse des Saarkarbons. 2. Teil: Alloiopteris und Palmatopteris. Palaeontographica (B: Paläophytologie) 170: 126–150.Google Scholar
  2. Archangelsky, S., and R. Cúneo. 1986. Corynepteris australis sp. nov., primer registro de una coenopteridal en el Pérmico inferior de Chubut, Argentina. Actas IV Congreso Argentino Paleontologia y Bioestratigrafia, Mendoza 1: 177–185.Google Scholar
  3. Barthel, M. 1968. Pecopteris feminaeformis (Schlotheim) Sterzel und “Araucaritesspiciformis Andrae in Germar Coenopterideen des Stephans und unteren Perms. Paläontologische Abhandlungen (B: Paläobotanik) 2(4): 726–742.Google Scholar
  4. Barthel, M. 2016. Die Rotliegendflora der Döhlen-Formation. Geologica Saxonica 61(2): 105–238.Google Scholar
  5. Baxter, R.W., and R.W. Baxendale. 1976. Corynepteris involucrata sp. nov., a new fertile fern of possible zygopterid affinities from the Pennsylvanian of Kansas. University of Kansas Paleontological Contributions. 85: 1–8.Google Scholar
  6. Bell, W.A. 1944. Carboniferous rocks and fossil floras of northern Nova Scotia. Geological Survey of Canada, Memoir 238: 1–120.Google Scholar
  7. Bertrand, P. 1909. Études sur la fronde des Zygopteridées, 1–286. Lille: L. Danel.CrossRefGoogle Scholar
  8. Bertrand, P. 1911. Structure des Stipes d’Asterochlaena laxa Stenzel. Mémoires de la Société Géologique du Nord 7: 1–72.Google Scholar
  9. Boureau, E., and J. Doubinger. 1975. Traité de Paléobotanique, Tome IV(2): Pteridophylla (1 e partie), 1–768. Paris: Masson.Google Scholar
  10. Cleal, C.J., and C.H. Shute. 2012. The systematic and palaeoecological value of foliage anatomy in Late Palaeozoic medullosalean seed–plants. Journal of Systematic Palaeontology 10(4): 765–800.  https://doi.org/10.1080/14772019.2011.634442.CrossRefGoogle Scholar
  11. Cotta, B. von. 1832. Die Dendrolithen in Bezug auf ihren inneren Bau, 1–89. Leipzig: Arnoldische Buchhandlung.Google Scholar
  12. Dennis, R.L. 1974. Studies of Paleozoic ferns: Zygopteris from the Middle and Upper Pennsylvanian of the United States. Palaeontographica (B: Paläophytologie) 148: 95–136.Google Scholar
  13. DiMichele, W.A., and T.L. Phillips. 1994. Paleobotanical and paleoecological constraints on models of peat formation in the Late Carboniferous of Euramerica. Palaeogeography, Palaeoclimatology, Palaeoecology 106(1–4): 39–90.CrossRefGoogle Scholar
  14. Evert, R.F. 2006. Esau's plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development, 3rd ed., 1–601. Hoboken: Wiley.CrossRefGoogle Scholar
  15. Galtier, J. 2004. A new zygopterid fern from the Early Carboniferous of France and a reconsideration of the Corynepteris-Alloiopteris ferns. Review of Paleobotany and Palynology 128: 195–217.CrossRefGoogle Scholar
  16. Galtier, J., and T.L. Phillips. 1996. Structure and evolutionary significance of Palaeozoic ferns. In Pteridology in perspective, eds. J.M. Camus, M. Gibby, and R.J. Johns, 417–433. Kew: Royal Botanic Gardens.Google Scholar
  17. Galtier, J., and A.C. Scott. 1979. Studies of Paleozoic ferns: on the genus Corynepteris, a redescription of the type and some other European species. Palaeontographica (B: Paläophytologie) 170: 81–125.Google Scholar
  18. Galtier, J., and J. Holmes. 1976. Un Corynepteris a structure conserve e du Westphalien d’Angleterre. Comptes rendus des seánces de l'Académie des Sciences (D: Sciences naturelles) 282: 1265–1268.Google Scholar
  19. Gaitzsch, B.G., R. Rößler, J.W. Schneider, and S. Schretzenmayr. 1998. Neue Ergebnisse zur Verbreitung potentieller Muttergesteine im Karbon der variscischen Vorsenke in Nordostdeutschland. Geologisches Jahrbuch (A: Allgemeine und regionale Geologie Bundesrepublik Deutschland und Nachbargebiete, Tektonik, Stratigraphie, Paläontologie) 149: 25–58.Google Scholar
  20. Geinitz, H.B. 1854. Darstellung der Flora des Hainichen-Ebersdorfer und des Floehaer Kohlenbassins im Vergleich zu der Flora des Zwickauer Steinkohlengebietes. Preisschrift der Fürstlich Jablonowskischen Gesellschaft, 1–80. Leipzig: Hirzel.Google Scholar
  21. Göppert, H.R. 1836. Die fossilen Farnkräuter. Nova acta Academiae Caesareae Leopoldino Carolinae Germanicae Naturae Curiosorum 17, suppl.: xxxii + 1–486.Google Scholar
  22. Gothan, W. 1913. Die Oberschlesische Steinkohlenflora. I. Farne und farnähnliche Gewächse (Cycadofilices bezw. Pteridospermen). Abhandlungen der Königlich Preußischen Geologischen Landesanstalt (N.F.) 75: 1–279.Google Scholar
  23. Gothan, W. 1932. Die Altersstellung des Karbons von Flöha i. Sa. im Karbonprofil aufgrund der Flora. Abhandlungen des Sächsischen Geologischen Landesamtes 12: 15–19.Google Scholar
  24. Hartung, W. 1938. Flora und Altersstellung des Karbons von Hainichen-Ebersdorf und Borna bei Chemnitz. Abhandlungen des Sächsischen Geologischen Landesamtes 18: 1–140.Google Scholar
  25. Jennings, J.R. 1975. Lower Pennsylvanian plants of Illinois II: structurally preserved Alloiopteris from the Drury Shale. Journal of Paleontology 49(1): 52–57.Google Scholar
  26. Kroner, U, Hahn, T. 2004. Sedimentation, Deformation und Metamorphose im Saxothuringikum während der variszischen Orogenese: Die komplexe Entwicklung von Nord-Gondwana während kontinentaler Subduktion und schiefer Kollision. In Das Saxothuringikum. Abriss der präkambrischen und paläozoischen Geologie von Sachsen und Thüringen, ed. U. Linnemann. Geologica Saxonica 48/49: 137–150.Google Scholar
  27. Li, X., X. Wu, G. Shen, X. Liang, H. Zhu, Z. Tong, and L. Li. 1993. The Namurian and its biota in the east sector of North Qilian Mountain, 1–482. Jinan: Shandong Science and Technology. (in Chinese with English summary).Google Scholar
  28. Libertín, M., S. Opluštil, J. Pšenička, J. Bek, I. Sýkorová, and J. Dašková. 2009. Middle Pennsylvanian pioneer plant assemblage buried in situ by volcanic ash-fall, central Bohemia, Czech Republic. Review of Palaeobotany and Palynology 155: 204–233.  https://doi.org/10.1016/j.revpalbo.2007.12.012.CrossRefGoogle Scholar
  29. Löcse, F., J. Meyer, R. Klein, U. Linnemann, J. Weber, and R. Rößler. 2013. Neue Florenfunde in einem Vulkanit des Oberkarbons von Flöha—Querschnitt durch eine ignimbritische Abkühlungseinheit. Veröffentlichungen Museum Naturkunde Chemnitz 36: 85–142.Google Scholar
  30. Löcse, F., U. Linnemann, G. Schneider, V. Annacker, T. Zierold, and R. Rößler. 2015. 200 Jahre Tubicaulis solenites (Sprengel) Cotta—Sammlungsgeschichte, Paläobotanik und Geologie eines oberkarbonischen Baumfarn-Unikats aus dem Schweddey-Ignimbrit vom Gückelsberg bei Flöha. Veröffentlichungen Museum Naturkunde Chemnitz 38: 5–46.Google Scholar
  31. Löcse, F., T. Zierold, and R. Rößler. 2017. Provenance and collection history of Tubicaulis solenites (Sprengel) Cotta. A unique fossil tree fern and its 200-year journey through the international museum landscape. Journal of the History of Collections 30(2):241–251.CrossRefGoogle Scholar
  32. Löcse, F., U. Linnemann, G. Schneider, M. Merbitz, and R. Rößler. 2019. First U-Pb LA-ICP-MS zircon ages assessed from a volcano-sedimentary complex of the mid-European Variscids (Pennsylvanian, Flöha Basin, SE Germany). International Journal of Earth Sciences 108: 713–733.  https://doi.org/10.1007/s00531-019-01684-z.CrossRefGoogle Scholar
  33. Mickle, J.E. 1989. Notoschizaea Graham is a synonym of Corynepteris Baily (Coenopteridales; Carboniferous). Journal of Paleontology 63(5): 690–693.CrossRefGoogle Scholar
  34. Němejc, F. 1928. Some new interesting discoveries of plantimpressions in the coal basins of Central Bohemia (Některé zajímavější nálezy rostlinných otisků ze středočeských pánví kamenouhelných). Rozpravy II. Třídy České Akademie 37(46):1–9. (in Czech).Google Scholar
  35. Opluštil, S. 2005. Evolution of the Middle Westphalian river valley drainage system in central Bohemia (Czech Republic) and it palaeogeographic implication. Palaeogeography, Palaeoclimatology, Palaeoecology 222: 223–258.CrossRefGoogle Scholar
  36. Opluštil, S., and J. Pešek. 1998. Stratigraphy, palaeoclimatology and palaeogeography of the Late Palaeozoic continental deposits in the Czech Republic. Geodiversitas 20(4): 597–620.Google Scholar
  37. Opluštil, S., J. Pšenička, M. Libertín, A.R. Bashforth, Z. Šimůnek, J. Drábková, and J. Dašková. 2009a. Middle Pennsylvanian (Bolsovian) peat-forming forest preserved in situ in volcanic ash of the Whetstone Horizon in the Radnice Basin, Czech Republic. Review of Palaeobotany and Palynology 155: 234–274.CrossRefGoogle Scholar
  38. Opluštil, S., J. Pšenička, M. Libertín, J. Bek, J. Dašková, Z. Šimůnek, and J. Drábková. 2009b. Composition and structure of an in situ Middle Pennsylvanian peat-forming plant assemblage in volcanic ash, Radnice Basin (Czech Republic). Palaios 24: 726–746.CrossRefGoogle Scholar
  39. Opluštil, S., J. Pšenička, J. Bek, J. Wang, Z. Feng, M. Libertín, Z. Šimůnek, J. Bureš, and J. Drábková. 2014. T0 peat-forming plant assemblage preserved in growth position by volcanic ash-fall: a case study from the Middle Pennsylvanian of the Czech Republic. Bulletin of Geosciences 89(4): 773–818.CrossRefGoogle Scholar
  40. Opluštil, S., M. Schmitz, C.J. Cleal, and K. Martínek. 2016. A review of the Middle-Late Pennsylvanian west European regional substages and floral biozones, and their correlation to the Geological Time Scale based on new U-Pb ages. Earth Science Reviews 154: 331–335.Google Scholar
  41. Paech, H.-J. 1989. Geological Characterization of the Ancient Variscan Molasses of the Sub-Erzgebirge Basin. Zeitschrift für Geologische Wissenschaften 17(9): 908–919.Google Scholar
  42. Potonié, H. 1897. Lehrbuch der Pflanzenpaläontologie, 1–208. Berlin: Ferdinand Dümmlers Verlagsbuchhandlung.Google Scholar
  43. Phillips, T.L., and J. Galtier. 2005. Evolutionary and ecological perspectives of Late Paleozoic ferns Part I Zygopteridales. Review of Palaeobotany and Palynology 135: 165–203.CrossRefGoogle Scholar
  44. Pšenička, J. 2005. Taxonomy of Pennsylvanian—Permian ferns from coal Basins in the Czech Republic and Canada. Unpublished PhD thesis. 1–185. Prague: Faculty of Science, Charles University.Google Scholar
  45. Rößler, R., and M. Barthel. 1998. Rotliegend taphocoenoses preservation favoured by rhyolitic explosive volcanism. Freiberger Forschungshefte (C: Paläontologie, Stratigraphie, Fazies) 474: 59–101.Google Scholar
  46. Rößler, R., and J. Galtier. 2002. Dernbachia brasiliensis gen. nov. et sp. nov.—a new small tree fern from the Permian of NE Brazil. Review of Palaeobotany and Palynology 122: 239–263.CrossRefGoogle Scholar
  47. Sahni, B. 1932. On the structure of Zygopteris primaria (Cotta) and on the relations between the genera Zygopteris, Etapteris and Botrychioxylon. Philosophical Transactions of the Royal Society of London (B: Biological Sciences) 222: 29–45.CrossRefGoogle Scholar
  48. Scott, D.H. 1920. Studies in Fossil Botany. Pteridophyta, vol. I, 3rd ed. 1–434. London: Black.Google Scholar
  49. Schneider, J.W., R. Rößler, K. Hoth, P. Wolf, M. Lobin, B.G. Gaitzsch, H. Walter, and E.-A. Koch. 2005. Vorerzgebirgs-Senke und Erzgebirge. Courier Forschungsinstitut Senckenberg 254: 447–460.Google Scholar
  50. Shen, G. 1995. Permian floras, Chapter 4. In Fossil Floras of China Through the Geological Ages, ed. X. Li, 127–223. Guangzhou: Guangdong Science Technology.Google Scholar
  51. Stenzel, K.G. 1889. Die Gattung Tubicaulis Cotta. Mitteilungen aus dem Königlichen Mineralogisch-Geologischen und Prähistorischen Museum in Dresden 8: 1–50.Google Scholar
  52. Stur, D. 1883. Zur Morphologie und Systematik der Culm- und Carbonfarne. Sitzungsberichte der Akademie der Wissenschaften zu Wien, mathematisch-naturwissenschaftliche Klasse 88: 633–849.Google Scholar
  53. Taylor, T.N., and E.L. Taylor. 1993. The Biology and Evolution of Fossil Plants, 1–982. New York: Prentice Hall.Google Scholar
  54. Taylor, T.N., E.L. Taylor, and M. Krings. 2009. Paleobotany. The Biology and Evolution of fossil plants, 2nd ed., 1–1230. Amsterdam: Elsevier.CrossRefGoogle Scholar
  55. Wolf, P., K. Hoth, A. Kampe, R. Rößler, and J.W. Schneider. 2008. Karbon–Oberkarbon. In Geologie von Sachsen. Geologischer Bau und Entwicklungsgeschichte, eds. H. Walter and W.E. Pälchen, 203–223. Schweizerbart’sche Verlagsbuchhandlung: Stuttgart.Google Scholar

Copyright information

© Paläontologische Gesellschaft 2019

Authors and Affiliations

  • Josef Pšenička
    • 1
    • 6
    Email author
  • Ronny Rößler
    • 2
    • 3
  • Jana Frojdová
    • 4
  • Stanislav Opluštil
    • 5
  • Mathias Merbitz
    • 2
  1. 1.Centre for PalaeobiodiversityWest Bohemian Museum in PilsenPilsenCzech Republic
  2. 2.Museum für NaturkundeChemnitzGermany
  3. 3.Institut für GeologieTU Bergakademie FreibergFreibergGermany
  4. 4.Laboratory of Palaeobiology and PalaeoecologyInstitute of Geology of the Czech Academy of SciencesPrague 6Czech Republic
  5. 5.Institute of Geology and Palaeontology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
  6. 6.State Key Laboratory of Palaeobiology and GeologyNanjing Institute of Geology and Palaeontology, Chinese Academy of SciencesNanjingPeople’s Republic of China

Personalised recommendations