pp 1–19 | Cite as

Early Jurassic “worm holothurians” (Echinodermata) as faecal traces of a worm-like holothurian-eater reflecting the consumed species

  • Reimund HaudeEmail author
Research Paper


“Worm holothurians” from a sequence of Early Liassic (Hettangian) shales at Göttingen (Germany) are string- and strip-shaped relics of faeces of a worm-like holothurian-eater. They consist of three typical associations of morphotypes of microscopic calcitic ossicles of the body wall skeletons of holothurians: (1) mostly buttons and a few larger hooks; (2) polyperforate spectacles and many tiny hooks; or, rarely, (3) sieve platelets only. The faeces were discarded by the predator partly as it rapidly advanced, leaving an elongated, irregularly curved string at the sediment surface, but mostly during its slow creeping and crawling at and below the sediment/water interface, when it left a narrowly meandering string in its moulded or tunnel-like trail. The elongated strings are generally well preserved, whereas the meandering ones are generally totally disintegrated, possibly due to ventilating activities of the predator. Upon the collapse of the trail wall, the biostratinomic state of disintegration was fixed as a strip of ossicles. Such a strip, therefore, represents the faecally documented part of a creeping or crawling trace in or just below the sediment surface. All holothurian calcareous ring segments found in some of the two kinds of strip-shaped ossicle associations with hooks belong to the same new type of ring form. According to a feasible scenario for the predator–prey relationship, this form should be defined as a new genus of chiridotid Apodida that contains the ossicle associations with hooks as two biological species. The strings of concentrated sieve platelets should also be interpreted as a biological species from a new genus within the Dendrochirotida.


Echinoderms Holothurians Holothurian-eaters Coprolites Repichnia Liassic 



The first aggregates and worm-like ossicle associations were shown to me for determination by Peter Wüstemann (Göttingen), who also provided permission to visit this protected site at Göttingen. Hartmut Scholz (Göttingen) gave insight into his microcollections from Jurassic shales in southern Germany. Burkhard Schmidt (Göttingen) and Tanja R. Stegemann (Göttingen, Munich) enabled the application of digital microphotography. Charlotte Kniest (Göttingen) helped with the acquisition of rare literature. Jes Rust (Bonn) commented on some remnants of arthropods. Walter Riegel (Göttingen) improved earlier versions of the English text. Alexei Smirnov (St. Petersburg) commented positively on a previous version of the manuscript. As reviewers, Tanja R. Stegemann (see above), Alexander M. Kerr (Guam), and Mike Reich (the editor-in-chief, Munich) eliminated a multitude of formal deficiencies, and made constructive suggestions. I am extremely grateful for all this support.


  1. Bandel, K. 1974. Faecal pellets of Amphineura and Prosobranchia (Mollusca) from the Carribean coast of Columbia, South America. Senckenbergiana maritima 6(1): 1–31.Google Scholar
  2. Bartenstein, H. 1936. Kalk-Körper von Holothurien in norddeutschen Lias-Schichten. Senckenbergiana 18(1/2): 1–10.Google Scholar
  3. Bartenstein, H., and E. Brand. 1937. Mikro-paläontologische Untersuchungen zur Stratigraphie des nordwest-deutschen Lias und Doggers. Abhandlungen der senckenbergischen naturforschenden Gesellschaft 439: 1–224.Google Scholar
  4. Barthel, K.W., N.H.M. Swinburne, and S. Conway Morris. 1990. Solnhofen: A Study in Mesozoic Palaeontology, 1–236. Cambridge: Cambridge University Press.Google Scholar
  5. Bishop, G.A. 1975. Traces of predation. In The Study of Trace Fossils, ed. R.W. Frey, 261–281. New York: Springer.CrossRefGoogle Scholar
  6. Boczarowski, A. 1997. Achistrum antiquus a new species of apodid holothurian from the Late Permian of the Holy Cross Mountains. In Proceedings of the 13th International Congress on the Carboniferous and Permian, eds. M. Podemski, S. Dybova-Jachowicz, K. Jaworowski, J. Jureczka, and R. Wagner. Prace Państwowego Instytutu Geologicznego 157: 93–103.Google Scholar
  7. Boczarowski, A. 2001. Isolated sclerites of Devonian non-pelmatozoan echinoderms. Palaeontologia Polonica 59: 1–219.Google Scholar
  8. Boczarowski, A. 2006. First complete holothurian skeletons from Poland (Early Kimmeridgian, Bełchatów, Central Poland). In Jurassic Organisms in Space and Time. 7th International Congress on the Jurassic System, Abstract Volume, Session 5, 231–232. Polish Geological Institute: Kraków.Google Scholar
  9. Boucot, A.J. 1990. Evolutionary Paleobiology of Behavior and Coevolution., 1–725. Amsterdam: Elsevier.Google Scholar
  10. Brandt, A. 2000. Hypotheses on Southern Ocean peracarid evolution and radiation (Crustacea, Malacostraca). Antarctic Science 12(3): 269–275.CrossRefGoogle Scholar
  11. Croneis, C., and J. McCormack. 1932. Fossil Holothuroidea. Journal of Paleontology 6(2): 111–148.Google Scholar
  12. Deflandre-Rigaud, M. 1952. Contribution à la systématique des sclérites d’Holothurides fossiles. Bulletin de l’Institute Océanographique de Monaco 1012: 1–12.Google Scholar
  13. Dietl, G., and G. Schweigert. 2001. Im Reich der Meerengel. Der Nusplinger Plattenkalk und seine Fossilien, 1–144. München: Pfeil.Google Scholar
  14. Ebert, M., M. Kölbl-Ebert, and J.A. Lane. 2015. Fauna and predator–prey relationships of Ettling, an actinopterygian fish-dominated Konservat-Lagerstätte from the Late Jurassic of Southern Germany. PLoS One 10 (1): e0116140.
  15. Eiserhardt, K.H., L. Koch, and W.L. Eiserhardt. 2001. Revision des Ichnotaxon Tomaculum Groom, 1902. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 221: 325–358.Google Scholar
  16. Etheridge, R. 1881. On the presence of the scattered skeletal remains of Holothuroidea in the Carboniferous limestone series of Scotland. Proceedings of the Royal Physical Society of Edinburgh 6: 183–198.Google Scholar
  17. Francour, P. 1997. Predation on Holothurians: a literature review. Invertebrate Biology 116(1): 52–60.CrossRefGoogle Scholar
  18. Frentzen, K. 1964. Funde von Holothurien-Kalkkörperchen im Jura des Oberrheingebietes. Beiträge zur naturkundlichen Forschung in Südwestdeutschland 23: 31–51.Google Scholar
  19. Frizzell, D.L., and H. Exline. 1956. Monograph of fossil holothurian sclerites. Bulletin, University of School of Mines and Metallurgy (Technical Series) 89[for 1955](1): 1–204.Google Scholar
  20. Frizzell, D.L., and H. Exline. 1966. Holothuroidea—fossil record. In Treatise on Invertebrate Paleontology, Part U: Echinodermata 3, Volume 2, ed. R.C. Moore, U3(2): U646–U672. Boulder, Colo.: The Geological Society of America and Lawrence, Kan.: The University of Kansas Press.Google Scholar
  21. Gage, J.D., and D.S.M. Billett. 1986. The family Myriotrochidae Théel (Echinodermata: Holothuroidea) in the deep northeast Atlantic Ocean. Zoological Journal of the Linnean Society 88: 229–276.CrossRefGoogle Scholar
  22. Gilliland, P.M. 1992. Holothurians in the Blue Lias of southern Britain. Palaeontology 35(1): 159–210.Google Scholar
  23. Gilliland, P.M. 1993. The skeletal morphology, systematics and evolutionary history of holothurians. Special Papers in Palaeontology 47: 1–147.Google Scholar
  24. Gutschick, R.C., and W.F. Canis. 1971. The holothurian sclerite genera Cucumarites, Eocaudina and Thuroholia. Re-study of Eocaudina and Protocaudina from the Devonian of Iowa. Journal of Paleontology 45(2): 327–337.Google Scholar
  25. Häntzschel, W. 1975. Trace fossils and problematica. Coprolites. In Treatise on Invertebrate Paleontology, Part W: Miscellanea, Suppl. 1, ed. C. Teichert, W139–W143. Boulder, Colo.: The Geological Society of America and Lawrence, Kan.: The University of Kansas Press.Google Scholar
  26. Haude, R. 1992. Fossil holothurians: Sclerite aggregates as ‘good’ species. In Echinoderm Research 1991, eds. L. Scalera-Liaci and C. Canicatti, 29–33. Rotterdam: Balkema.Google Scholar
  27. Haude, R. 1995a. Die Holothurien-Konstruktion: Evolutionsmodell und ältester Fossilbericht. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 195(1–3): 181–198.CrossRefGoogle Scholar
  28. Haude, R. 1995b. Echinodermen aus dem Unter-Devon der argentinischen Präkordillere. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 197(1): 37–86.CrossRefGoogle Scholar
  29. Haude, R. 1997. Nudicorona, eine devonische Holothurie. Fossilien 14(1): 50–57.Google Scholar
  30. Haude, R. 2002. Origin of the holothurians (Echinodermata) derived by constructional morphology. Mitteilungen aus dem Museum für Naturkunde in Berlin, Geowissenschaftliche Reihe 5: 141–153.Google Scholar
  31. Haude, R. 2004. “Worm holothurians” from the Lower Jurassic of Göttingen, Germany. In Echinoderms. Proceedings of the 11th International Echinoderm Conference, München 2003, eds. T. Heinzeller, and J.H. Nebelsick, 421–423. London: Taylor and Francis Group.Google Scholar
  32. Haude, R. 2010. Virtual excursion to the Liassic holothurian park of Göttingen. In Echinoderm Research 2010. 7th European Conference on Echinoderms, Göttingen. Abstract Volume, eds. M. Reich, J. Reitner, V. Roden, and B. Thuy, 47–48. Göttingen: Universitätsverlag.Google Scholar
  33. Haude, R., and E. Thomas. 1994. Eleutherozoen (Echinodermata) aus dem Unter-Karbon von Aprath im Bergischen Land. In Geologie, Paläontologie und Ur- und Frühgeschichte zwischen Lippe und Wupper, eds. C. Hackler, A. Heinrich, and E.B. Krause. Archäologie im Ruhrgebiet 2: 115–132. Gelsenkirchen: Edition Archaea.Google Scholar
  34. Heding, S.G. 1935. Myriotrochus eurycyclus n. sp.. A new apedate Holothurian from the Kara-Sea. Videnskabelige Meddelelser fra Dansk naturhistorisk Forening i København 98: 229–234.Google Scholar
  35. Heding, S.G., and A. Panning. 1954. Phyllophoridae. Eine Bearbeitung der polytentaculaten dendrochiroten Holothurien des Zoologischen Museums in Kopenhagen. Spolia Zoologica Musei Hauniensis, Skrifter udgivet af Universitetets Zoologiske Museum København 13: 7–209.Google Scholar
  36. Hess, H. 1999. Upper Jurassic Solnhofen Plattenkalk of Bavaria, Germany. In Fossil Crinoids, eds. H. Hess, W.I. Ausich, C.E. Brett, and M.J. Simms, 216–224. Cambridge: Cambridge University Press.Google Scholar
  37. Hess, H. 1973. Neue Echinodermenfunde aus dem mittleren Dogger des Aargauer Juras. Eclogae Geologicae Helvetiae 66(3): 625–656.Google Scholar
  38. Hess, H. 1975. Die fossilen Echinodermen des Schweizer Juras. Veröffentlichungen des Naturhistorischen Museums Basel 8: 1–130.Google Scholar
  39. Hess, H., and H. Holenweg. 1998. Ein neuer Holothurienfund aus dem Schweizer Jura. Fossilien 15(5): 306–309.Google Scholar
  40. Hodson, F., B. Harris, and L. Lawson. 1956. Holothurian spicules from the Oxford Clay of Redcliff, near Weymouth (Dorset). Geological Magazine 93(4): 336–344.CrossRefGoogle Scholar
  41. Hyman, L.H. 1955. Class Holothuroidea. In The Invertebrates: Echinodermata. The Coelomate Bilateria, 4: 121–244. New York, Toronto, London: McGraw-Hill Book Company.Google Scholar
  42. Issler, A. 1908. Beiträge zur Stratigraphie und Mikrofauna des Lias in Schwaben. Palaeontographica 55: 1–104.Google Scholar
  43. Janicke, V. 1970. Lumbricaria—ein Cephalopoden-Koprolith. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1970: 50–60.Google Scholar
  44. Jell, P.A. 2011. Late Silurian echinoderms from the Yass basin, New South Wales—the earliest holothurian body fossil and two diploporitan cystoids (Sphaeronitidae and Holocystidae). Memoirs of the Association of Australasian Palaeontologists 39: 27–41.Google Scholar
  45. Kaestner, A. 1963. Echinodermata. In Lehrbuch der Speziellen Zoologie. Teil I: Wirbellose 2 (5. Lieferung), 1160–1367. Jena: G. Fischer.Google Scholar
  46. Kerr, A. 2001. Phylogeny of the apodan holothurians (Echinodermata) inferred from morphology. Zoological Journal of the Linnean Society 133: 53–62.Google Scholar
  47. Knaust, D. 2010. Remarkably preserved benthic organisms and their traces from a Middle Triassic (Muschelkalk) mud flat. Lethaia 43: 344–356.Google Scholar
  48. Knaust, D. 2017. Atlas of Trace Fossils in Well Core, 1–209. Cham: Springer.Google Scholar
  49. Kristan-Tollmann, E. 1965. Revision der Arbeit von K. Frentzen: „Funde von Holothurien-Kalkkörperchen im Jura des Oberrheingebietes”. Beiträge zur naturkundlichen Forschung in Südwestdeutschland 24: 17–20.Google Scholar
  50. Kropp, R.K. 1982. Responses of five holothurian species to attacks by a predatory gastropod, Tonna perdix. Pacific Science 36(4): 445–452.Google Scholar
  51. Kulkarni, K.G., and R. Panchang. 2015. New insights into polychaete traces and fecal pellets: another complex ichnotaxon? PLoS One 10(10): e0139933.CrossRefGoogle Scholar
  52. Lacey, K.M.J., G.P. McCormack, B.F. Keegan, and R. Powell. 2005. Phylogenetic relationships within the class Holothuroidea, inferred from 18S rRNA gene data. Marine Biology 147: 1149–1154.CrossRefGoogle Scholar
  53. Martin, W.R. 1952. Holothuroidea from the Devonian of Iowa. Journal of Paleontology 26(5): 728–729.Google Scholar
  54. Mauzey, K.P., C. Birkeland, and P.K. Dayton. 1968. Feeding behavior of asteroids and escape responses of their prey in the Puget Sound region. Ecology 49(4): 603–619.Google Scholar
  55. Medeiros-Bergen, D.E., and E. Miles. 1997. Recruitment in the Holothurian Cucumaria frondosa in the Gulf of Maine. Invertebrate Reproduction and Development 31(1–3): 123–133.CrossRefGoogle Scholar
  56. Michelsen, O. 1973. On Liassic holothurian and ostracod assemblages from the Danish Embayment. Danmarks Geologiske Undersøgelse, Årbog 1972: 49–68.Google Scholar
  57. Mortensen, T. 1937. Some echinoderm remains from the Jurassic of Württemberg. Kongelige Danske Videnskabernes Selskab. Biologiske Meddelelser 13(10): 1–28.Google Scholar
  58. Morton, B. 1991. Aspects of predation by Tonna zonatum (Prosobranchia: Tonnoidea) feeding on holothurians in Hong Kong. Journal of Molluscean Studies 57(1): 11–19.CrossRefGoogle Scholar
  59. O’Loughlin, P.M., and D. VandenSpiegel. 2007. New apodid species from southern Australia (Echinodermata: Holothuroidea: Apodida). Memoirs of Museum Victoria 64: 53–70.CrossRefGoogle Scholar
  60. O’Loughlin, P.M., and D. VandenSpiegel. 2010. A revision of Antarctic and some Indo-Pacific apodid sea cucumbers (Echinodermata: Holothuroidea: Apodida). Memoirs of Museum Victoria 67: 61–95.CrossRefGoogle Scholar
  61. Pawson, D.L. 1970. The marine fauna of New Zealand: sea cucumbers (Echinodermata: Holothuroidea). New Zealand Department of Scientific and Industrial Research, Bulletin 201 (also N.Z. Oceanographic Institute, Memoir 52): 7–69.Google Scholar
  62. Pawson, D.L. 1980. Holothuroidea. In Echinoderms. Notes for a Short Course, eds. T.W. Broadhead and J.A. Waters. Studies in Geology 3: 175–189.Google Scholar
  63. Reich, M. 2010. The early evolution and diversification of holothurians (Echinozoa). In Echinoderms: Proceedings of the 12th International Echinoderm Conference, Durham, New Hampshire, USA, 2006, eds. L.G. Harris, S.A. Böttger, C.W. Walker, and M.P. Lesser, 55–59. London: Taylor and Francis Group.Google Scholar
  64. Reich, M. 2013. How many species of fossil holothurians are there? In Echinoderms in a Changing World, ed. C. Johnson, 23–51. Boca Raton: CRC Press, Taylor and Francis Group.Google Scholar
  65. Reich, M., and K. Haldimann. 2001. Holothuriensklerit-Aggregate aus dem Unteren Jura der Schweiz. Greifswalder Geowissenschaftliche Beiträge 9: 40–41.Google Scholar
  66. Reich, M., and W. Mette. 2001. Holothurien aus dem mittleren Jura Nordsomalias. Greifswalder Geowissenschaftliche Beiträge 9: 43.Google Scholar
  67. Reich, M., and T. Stegemann. 2010. Holothurians (Apodida) from the Late Palaeozoic Mazon Creek Fossillagerstätte (Illinois, USA). In Echinoderm Research 2010. 7th European Conference on Echinoderms, Göttingen, Abstract Volume, eds. M. Reich, J. Reitner, V. Roden, and B. Thuy, 90–91. Göttingen: Universitätsverlag.Google Scholar
  68. Rioult, M. 1961. Les sclérites d’holothuries fossiles du Lias. In Colloque sur le Lias français, Chambery 1960. Mémoires du Bureau de Recherches Géologiques et Minières 4: 121–153.Google Scholar
  69. Savrda, C.E., P.A. Daymond, and A.M. Hespel. 2016. Preservation of mucus trails by early pyritization in Cretaceous Ingersoll Shale (Eutaw Formation, eastern Alabama, USA). Palaios 31(2): 25–34.CrossRefGoogle Scholar
  70. Schäfer, W. 1962. Aktuo-Paläontologie nach Studien in der Nordsee, 1–666. Frankfurt/Main: Verlag Waldemar Kramer.Google Scholar
  71. Schrödl, M., and H. Wägele. 2001. Anatomy and histology of Corambe lucea Marcus, 1959 (Gastropoda, Nudibranchia, Doridoidea), with a discussion of the systematic position of Corambidae. Organisms, Diversity and Evolution 1: 3–16.CrossRefGoogle Scholar
  72. Smirnov, A.V. 1981. Chiridota orientalis (Apoda, Chiridotidae), a new species of sea-cucumbers from the far east seas of the USSR. Zoologicheskij Zhurnal 60: 78–83. (in Russian).Google Scholar
  73. Smirnov, A.V. 2012. System of the Class Holothuroidea. Paleontological Journal 46(8): 793–832.CrossRefGoogle Scholar
  74. Smirnov, A.V. 2014. Sea cucumbers symmetry (Echinodermata: Holothuroidea). Paleontological Journal 48(12): 1215–1236.CrossRefGoogle Scholar
  75. Smith, A.B. 1997. Echinoderm larvae and phylogeny. Annual Review of Ecology and Systematics 28: 219–241.CrossRefGoogle Scholar
  76. Smith, A.B., and J. Gallemí. 1991. Middle Triassic holothurians from northern Spain. Palaeontology 34(1): 49–76.Google Scholar
  77. Smith, A.B., and M. Reich. 2013. Tracing the evolution of the holothurian body plan through stem-group fossils. Biological Journal of the Linnean Society 109(3): 670–681.CrossRefGoogle Scholar
  78. Stegemann, T.R., P.M. O’Loughlin, and M. Reich. 2014. Hard part morphology of some living Taeniogyrus species (Holothuroidea: Apodida: Chiridotidae). In 7th North American Echinoderm Conference, University of West Florida. Conference Program, ed. Anonymous. p. 17. Pensacola: UWF.Google Scholar
  79. Stille, H. 1932. Erläuterungen zur Geologischen Karte von Preußen und benachbarten Bundesstaaten. Blatt Göttingen Nr. 2520, 3rd ed, Lieferung 62: 1–40. Berlin: Preußische Geologische Bundesanstalt.Google Scholar
  80. Usbeck, I. 1952. Zur Kenntnis von Mikrofauna und Stratigraphie im unteren Lias alpha Schwabens. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 95(3): 371–476.Google Scholar
  81. Vannier, J. 2012. Gut contents as direct indicators for trophic relationships in the Cambrian marine ecosystem. PLoS One 7(12): e52200. Scholar
  82. Walker, S.E., and C.E. Brett. 2002. Post-Paleozoic patterns in marine predation: was there a Mesozoic and Cenozoic marine predatory revolution? Paleontological Society Papers 8: 119–193.Google Scholar
  83. Wernlund, R.J. 1996. Taxonomy, distribution, and paleoecology of holothurian (Echinodermata) sclerites in Upper Pennsylvanian cyclothem shales, north-central Texas and south-central Kansas. Ph.D. dissertation, 1–234. Lubbock: Texas Tech University, Department of Geosciences.Google Scholar
  84. Westheide, W., and R. Rieger, eds. 2007. Spezielle Zoologie. Teil 1: Einzeller und Wirbellose Tiere, 1–894. München: Elsevier Spektrum Akademischer Verlag.Google Scholar
  85. Wilkie, I.C., and R.H. Emson. 1988. Mutable collagenous tissues and their significance for echinoderm palaeontology and phylogeny. In Echinoderm Phylogeny and Evolutionary Biology, 311–330, eds. C.R.C. Paul, and A.B. Smith. Liverpool Geological Society. Oxford: Clarendon Press.Google Scholar
  86. Wotton, R.S., and B. Malmqvist. 2001. Feces in aquatic ecosystems. BioScience 51(7): 537–544.CrossRefGoogle Scholar
  87. Wüstemann, P. 1991. Die Schichtenfolge des Unteren Lias (Hettangium) der Ziegeleitongruben am Ascherberg bei Göttingen. Unpublished Diploma Thesis, part 2: 87–204. Göttingen: Geologisch-Paläontologisches Institut, Georg-August-Universität.Google Scholar

Copyright information

© Paläontologische Gesellschaft 2019

Authors and Affiliations

  1. 1.Geowissenschaftliches Zentrum der Universität, Abteilung GeobiologieGöttingenGermany

Personalised recommendations