Advertisement

A Thermomechanical Modeling and Experimental Validation of the Gear Finish Hobbing Process

  • Naoual Sabkhi
  • Abdelhadi Moufki
  • Mohammed NouariEmail author
  • Armansyah Ginting
Regular Paper
  • 16 Downloads

Abstract

The current research work aims at developing an analytical modelling of the gear finish hobbing process when the uncut chip thickness may be very small. Numerical models and particularly finite element simulations of this complex material removal process are often limited to one tooth because of the high required computational time. To analyze the performance characteristics of this process, a predictive approach for finish gear hobbing based on an analytical model of orthogonal cutting operation is proposed. To reduce the computational time, a new calculation strategy has been developed. This allows to examine the local parameters which change significantly for each tooth. During the finishing hobbing process of large gears (6 m < diameter < 16 m), the industrial conditions require low cutting speeds (less than 1 m/s) with lubrication. Therefore, in order to consider the effect of lubrication, cutting speed and uncut thickness on the friction coefficient, an appropriate friction law was identified from orthogonal cutting tests. The cutting model has been experimentally validated for different cutting conditions. Finally, the effects of hobbing process on the cutting forces and the tool-chip contact parameters (contact length, pressure, frictional stress and temperature) have been investigated and deeply analyzed using the developed model. The distributions of these local parameters, at each tooth rake face, may be used as a process signature for the resulting condition of the machined surface and subsurface layers.

Keywords

Gear finish hobbing CAD model Analytical approach Cutting forces Temperature 

List of Symbols

\(t\)

Depth of cut

\(f_{a}\)

Axial feed

\(\upeta\)

Setting angle of the hob relative to the workgear

\(w\)

Gear width

\(\gamma_{h}\)

Helix angle of the hob

\(\varepsilon\)

Axial pitch of the hob

\(d_{h}\)

Outside diameter of the hob

\(d_{g}\)

Outside diameter of the workgear

\(\text{X}_{\text{i}} ,\;\text{Y}_{\text{i}} ,\;Z_{\text{i}}\)

Coordinate system associated to the workgear (i = 1, 2) and to the hob (i = 0, 4)

\(V\)

Cutting speed

\(V_{c}\)

Chip velocity

\(t_{1}\)

Uncut chip thickness

\(ds\)

Length of a cutting edge element

\(\alpha_{n}\)

Normal rake angle

\(K_{cv}\), \(K_{cf}\)

Cutting force coefficients

\(K_{ev}\), \(K_{ef}\)

Edge force coefficients

\(dF_{v}\), \(dF_{f}\)

Elementary cutting and feed forces

\({\mathbf{R}}_{tooth}\)

Total force exerted on a tooth

\(\theta\)

Angular position of a given tooth

\(h\)

Primary shear zone thickness

\(\phi_{n}\)

Normal shear angle

\(\bar{\mu }\)

Friction coefficient

\(\lambda\)

Mean friction angle

\(\tau\)

Shear stress

\(\gamma\)

Shear strain

\(\gamma_{total}\)

Total shear strain

\(\dot{\gamma }\)

Shear strain rate

\(\chi\)

Portion of heat source (primary shear zone) going to the workpiece

\(l_{c}\)

Tool-chip contact length

\(\bar{p}_{\text{int}}\)

Mean pressure along the tool-chip contact

T

Temperature

\(T_{w}\)

Workpiece temperature

\(T_{PSZ}\)

Temperature at the exit of the primary shear zone

\(\bar{T}_{\text{int}}\)

Average temperature at the tool-chip interface

\(T_{r}\)

Reference temperature

\(T_{m}\)

Melting temperature

\(n\)

Hardening exponent

\(m\)

Thermal softening coefficient

\(C\)

Strain rate sensitivity

\(A,\,B,\,\dot{\gamma }_{0}\)

Constant material characteristics (Johnson–Cook law)

\(\rho ,\;c,\,k\)

Material density, heat capacity and heat conductivity coefficient

\(\beta\)

Taylor-Quinney coefficient

\(\kappa\)

Effusivity ratio

Notes

References

  1. 1.
    Dimitriou, V., & Antoniadis, A. (2009). CAD-based simulation of the hobbing process for the manufacturing of spur and helical gears. International Journal of Advanced Manufacturing Technology,41, 347–357.CrossRefGoogle Scholar
  2. 2.
    Tapoglou, N., & Antoniadis, A. (2012). CAD-based calculation of cutting force components in gear hobbing. Journal of Manufacturing Science and Engineering,134, 03–1009.Google Scholar
  3. 3.
    Bouzakis, K.-D., Kombogiannis, S., Antoniadis, A., & Vidakis, N. (2002). Gear hobbing cutting process simulation and tool wear prediction models. Journal of Manufacturing Science and Engineering,124, 42–51.CrossRefGoogle Scholar
  4. 4.
    Bouzakis, K. D., Lili, E., Michailidis, N., & Friderikos, O. (2008). Manufacturing of cylindrical gears by generating cutting processes: A critical synthesis of analysis methods. CIRP Annals - Manufacturing Technology,57, 676–696.CrossRefGoogle Scholar
  5. 5.
    Bouzakis, K.-D., Friderikos, O., & Tsiafis, I. (2008). FEM-supported simulation of chip formation and flow in gear hobbing of spur and helical gears. CIRP Journal of Manufacturing Science and Technology,1, 18–26.CrossRefGoogle Scholar
  6. 6.
    Liu, W., Ren, D., Usui, S., Wadell, J., & Marusich, T. D. (2013). A gear cutting predictive model using the finite element method. Procedia CIRP,8, 51–56.CrossRefGoogle Scholar
  7. 7.
    Tenji, T. (2010). Finish hobbing of hardened gears with carbide hobs. Eng. Dept Kashifuji Works Ltd., pp. 1–14.Google Scholar
  8. 8.
    Bouzakis, K.-D. (1981). Konzept und technologische grundlagen zur automatisierten erstellung optimaler bearbeitungsdaten beim wälzfräsen. Dusseldorf: VDI-Verlag.Google Scholar
  9. 9.
    Bouzakis, K. D. (1979). Ermittlung des zeitlichen verlaufs der zerspankraftkomponenten beim waelzfraesen Teil 1: digitalrechnerprogramm FRDYN. VDI-Ber.,121, 943–950.Google Scholar
  10. 10.
    Bouzakis, K. D. (1979). Ermittlung des zeitlichen verlaufs der zerspankraftkomponenten beim waelzfraesen Teil 2: einfluesse technologischer parameter der werkzeuggeometrie und der werkradgeometrie. VDI-Ber.,121, 1016–1026.Google Scholar
  11. 11.
    Kienzle, O., & Victor, H. (1957). Spezifische schnittkräfte bei der metallbearbeitung, werkstattstech. maschinenbau. (Vol. 47, pp. 224–225).Google Scholar
  12. 12.
    Tapoglou, N., Mammas, A., & Antoniadis, A. (2013). Influence of machining data on developed cutting forces in gear hobbing. International Journal of Machining and Machinability of Materials,14, 66–76.CrossRefGoogle Scholar
  13. 13.
    Klocke, F., Gorgels, C., Stuckenberg, A., & Schalaster, R. (2010). Software-based process design in gear finish hobbing. Gear Technology,27, 48–52.Google Scholar
  14. 14.
    Bouzakis, K. D., Friderikos, O., Mirisidis, I., & Tsiafis, I. (2005). Determination of chip geometry and cutting forces in gear hobbing by a FEM-based simulation of the cutting process. In Proc. 8th CIRP int. workshop model. mach. oper. chemnitz (pp. 49–58).Google Scholar
  15. 15.
    Tapoglou, N., & Antoniadis, A. (2011). Hob3D: A novel gear hobbing simulation software. In Proc. world congr. eng. (pp. 861–864).Google Scholar
  16. 16.
    Vasilis, D., Nectarios, V., & Aristomenis, A. (2007). Advanced computer aided design simulation of gear hobbing by means of three-dimensional kinematics modeling. Journal of Manufacturing Science and Engineering,129, 911–918.CrossRefGoogle Scholar
  17. 17.
    Antoniadis, A. (1988). Determination of the impact tool stresses during gear hobbing and determination of cutting forces during hobbing of hardened gears. Dissertation, Aristoteles University of Thessaloniki.Google Scholar
  18. 18.
    Antoniadis, A., Vidakis, N., & Bilalis, N. (2002). Fatigue fracture investigation of cemented carbide tools in gear hobbing, part 1: FEM modeling of fly hobbing and computational interpretation of experimental results. Journal of Manufacturing Science and Engineering,41, 784–791.CrossRefGoogle Scholar
  19. 19.
    Antoniadis, A., Vidakis, N., & Bilalis, N. (2002). Fatigue fracture investigation of cemented carbide tools in gear hobbing, part 2: The effect of cutting parameters on the level of tool stresses—a quantitative parametric analysis. Journal of Manufacturing Science and Engineering,124, 792–798.CrossRefGoogle Scholar
  20. 20.
    Lei, S., Shin, Y. C., & Incropera, F. P. (1999). Material constitutive modeling under high strain rates and temperatures through orthogonal machining tests. Journal of Manufacturing Science and Engineering,121, 577–585.CrossRefGoogle Scholar
  21. 21.
    Oxley, P. L. B. (1989). The mechanics of machining: An analytical approach to assessing machinability. Amsterdam: Ellis Horwood.Google Scholar
  22. 22.
    Bouzakis, K., & Koenig, W. (1981). Process models for the incorporation of gear hobbing into an information centre for machining data. CIRP Annals-Manufacturing Technology,30, 77–82.CrossRefGoogle Scholar
  23. 23.
    Karpuschewski, B., Beutner, M., Köchig, M., & Härtling, C. (2017). Influence of the tool profile on the wear behaviour in gear hobbing. CIRP Journal of Manufacturing Science and Technology,18, 128–134.CrossRefGoogle Scholar
  24. 24.
    Habibi, M., & Chen, Z. C. (2016). A semi-analytical approach to un-deformed chip boundary theory and cutting force prediction in face-hobbing of bevel gears. Computer-Aided Design,73, 53–65.CrossRefGoogle Scholar
  25. 25.
    Moufki, A., Devillez, A., Dudzinski, D., & Molinari, A. (2004). Thermomechanical modelling of oblique cutting and experimental validation. International Journal of Machine Tools and Manufacture,44, 971–989.CrossRefGoogle Scholar
  26. 26.
    Moufki, A., Dudzinski, D., & Le Coz, G. (2015). Prediction of cutting forces from an analytical model of oblique cutting, application to peripheral milling of Ti-6Al-4V alloy. International Journal of Advanced Manufacturing Technology,81, 615–626.CrossRefGoogle Scholar
  27. 27.
    Sabkhi, N., Moufki, A., Nouari, M., Pelaingre, C., & Barlier, C. (2016). Prediction of the hobbing cutting forces from a thermomechanical modeling of orthogonal cutting operation. Journal of Manufacturing Processes,23, 1–12.CrossRefGoogle Scholar
  28. 28.
    Bouzakis, K. D., & Antoniadis, A. (1995). Optimizing of tangential tool shift in gear hobbing. CIRP Annals-Manufacturing Technology,44(1), 75–78.CrossRefGoogle Scholar
  29. 29.
    Armarego, E. J. A., & Epp, C. J. (1970). An investigation of zero helix peripheral up-milling. International Journal of Machine Tool Design and Research,10, 273–291.CrossRefGoogle Scholar
  30. 30.
    Oxley, P. L. B. (1989). Mechanics of machining. Amsterdam: Ellis Horwood.Google Scholar
  31. 31.
    Chandrasekaran, H., M’saoubi, R., & Chazal, H. (2005). Modelling of material flow stress in chip formation process from orthogonal milling and split Hopkinson bar tests. Machine Science and Technology,9, 131–145.CrossRefGoogle Scholar
  32. 32.
    Atlati, S., Moufki, A., Nouari, M., & Haddag, B. (2017). Interaction between the local tribological conditions at the tool–chip interface and the thermomechanical process in the primary shear zone when dry machining the aluminum alloy AA2024–T351. Tribology International,105, 326–333.CrossRefGoogle Scholar
  33. 33.
    Haddag, B., Atlati, S., Nouari, M., & Moufki, A. (2016). Dry machining aeronautical aluminum alloy AA2024-T351: Analysis of cutting forces, chip segmentation and built-up edge formation. Metals,6, 197.CrossRefGoogle Scholar
  34. 34.
    Shaw, M. C. (1984). Metal cutting principles. Oxford: Clarendon Press, Oxford Science Publication.Google Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.Altran France – Région EstBelfortFrance
  2. 2.Laboratoire d’Etude des Microstructures et de Mécanique des Matériaux, LEM3Université de LorraineMetz CedexFrance
  3. 3.Laboratory of Machining Processes, Department of Mechanical Engineering, Faculty of EngineeringUniversitas Sumatera UtaraMedanIndonesia

Personalised recommendations