Simultaneous 3-D Surface Profiling of Multiple Targets by Repetition Rate Scanning of a Single Femtosecond Laser

  • Yang Lu
  • Jiyong Park
  • Dian Bian
  • Liandong YuEmail author
  • Seung-Woo KimEmail author
Regular Paper


We present an integrated scheme of 3-D surface profile measurements made at multiple sites concurrently by employing only a single fiber femtosecond laser as the common light source of low coherence scanning interferometry. This versatile use of an ultrashort mode-locked laser is enabled by linear scanning control of the pulse repetition rate on the source site, while diverse forms of unequal-path, non-symmetric measurements are taken with nanometer precision for different targets simply by delivering fr-scanned pulses through a fiber network. This proposed scheme has no restriction on the number of interferometer sites being integrated concurrently, allowing more diverse industrial applications of ultrashort lasers despite increased system cost and complexity.


Surface profiling Multiple targets Low coherence scanning interferometry Femtosecond laser Repetition rate scanning 



This research is supported by Programme of Introducing Talents of Discipline to Universities of China (B12019), National Research Foundation (NRF) of the Republic of Korea (NRF-2012R1A3A1050386) and National Natural Science Foundation of China (No. 51927811 and 51975179).


  1. 1.
    Patti, R. S. (2006). Three-dimensional integrated circuits and the future of system-on-chip designs. Proceedings of the IEEE, 94(6), 1214–1224.CrossRefGoogle Scholar
  2. 2.
    Lupo, D., Clemens, W., Breitung, S., Hecker, K. (2013). OE-A roadmap for organic and printed electronics. In E. Cantatore (Ed.), Applications of organic and printed electronics (pp. 1–26). New York: Springer.Google Scholar
  3. 3.
    Jiang, X. (2012). Precision surface measurement. Philosophical Transactions, 370(1973), 4089–4114.CrossRefGoogle Scholar
  4. 4.
    Leach, R., Evans, C., He, L., Davies, A., Duparré, A., Henning, A., et al. (2015). Open questions in surface topography measurement: A roadmap. Surface Topography: Metrology and Properties, 3(1), 013001.Google Scholar
  5. 5.
    Greenwood, J. A., & Williamson, J. B. P. P. (1966). Contact of nominally flat surfaces. Proceedings of The Royal Society A Mathematical Physical and Engineering Sciences, 295(1442), 300–319.CrossRefGoogle Scholar
  6. 6.
    de Groot, P. (2015). Principles of interference microscopy for the measurement of surface topography. Advances in Optics and Photonics, 7(1), 1–65.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Harding, K. (2013). Handbook of optical dimensional metrology. Boca Raton: CRC Press.Google Scholar
  8. 8.
    Leach, R. (2011). Optical measurement of surface topography. Berlin: Springer.CrossRefGoogle Scholar
  9. 9.
    Huang, D., Swanson, E. A., Lin, C. P., Schuman, J. S., Stinson, W. G., Chang, W., et al. (1991). Optical coherence tomography. Science, 254(5035), 1178–1181.CrossRefGoogle Scholar
  10. 10.
    Schmit, J. (2013). White-light interference 3D microscopes. In K. Harding (Ed.), Handbook of optical dimensional metrology (pp. 395–418). London: Taylor and Francis.CrossRefGoogle Scholar
  11. 11.
    Joo, W. D., Park, J., Kim, S., Kim, S., Kim, Y., Kim, S. W., et al. (2013). Phase shifting interferometry for large-sized surface measurements by sweeping the repetition rate of femtosecond light pulses. International Journal of Precision Engineering and Manufacturing, 14(2), 241–246.CrossRefGoogle Scholar
  12. 12.
    Kim, Y. G., Seo, Y. B., & Joo, K. N. (2013). Low cost wafer metrology using a nir low coherence interferometry. Optics Express, 21(11), 13648–13655.CrossRefGoogle Scholar
  13. 13.
    Kim, J. A., Kang, C. S., Eom, T. B., Jin, J., Suhng, H. S., & Kim, J. W. (2014). Quadrature laser interferometer for in-line thickness measurement of glass panels using a current modulation technique. Applied Optics, 53(20), 4604–4610.CrossRefGoogle Scholar
  14. 14.
    Bae, E., Kim, Y., Park, S., & Kim, S. W. (2017). Large-aperture ground glass surface profile measurement using coherence scanning interferometry. Optics Express, 25(2), 1106–1113.CrossRefGoogle Scholar
  15. 15.
    Joo, W. D., Kim, S., Park, J., Lee, K., Lee, J., Kim, S., et al. (2013). Femtosecond laser pulses for fast 3-d surface profilometry of microelectronic step-structures. Optics Express, 21(13), 15323–15334.CrossRefGoogle Scholar
  16. 16.
    Oh, J. S., & Kim, S. W. (2005). Femtosecond laser pulses for surface-profile metrology. Optics Letters, 30(19), 2650–2652.CrossRefGoogle Scholar
  17. 17.
    Park, J., Kim, S., Kim, B., Kim, Y., & Kim, S. W. (2017). Tuning range extension of pulse repetition rate using chirped fiber bragg gratings. Optics Express, 25(2), 1413–1420.CrossRefGoogle Scholar
  18. 18.
    Hyun, S., Choi, M., Chun, B. J., Kim, S., Kim, S. W., & Kim, Y. J. (2013). Frequency-comb-referenced multi-wavelength profilometry for largely stepped surfaces. Optics Express, 21(8), 9780–9791.CrossRefGoogle Scholar
  19. 19.
    Jespersen, K. G., Le, T., GrünerNielsen, L., Jakobsen, D., Smedemand, M. B., Keiding, S. R., et al. (2010). A higher-order-mode fiber delivery for Ti: Sapphire femtosecond lasers. Optics Express, 18(8), 7798–7806.CrossRefGoogle Scholar
  20. 20.
    Fercher, A. F., Hitzenberger, C. K., Sticker, M., Zawadzki, R., Karamata, B., & Lasser, T. (2002). Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique. Optics Communications, 204(1–6), 67–74.CrossRefGoogle Scholar
  21. 21.
    Lu, Y., Park, J., Yu, L., & Kim, S. W. (2018). 3D profiling of rough silicon carbide surfaces by coherence scanning interferometry using a femtosecond laser. Applied Optics, 57(10), 2584–2589.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.School of Instrument Science and Opto-electronics EngineeringHefei University of Technology (HFUT)HefeiChina
  2. 2.Korea Institute of Industrial Technology (KITECH)SiheungRepublic of Korea
  3. 3.Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea

Personalised recommendations