Advertisement

A New Approach to Quantify the Uniformity Grade of the Electrohydrodynamic Inkjet Printed Features and Optimization of Process Parameters Using Nature-Inspired Algorithms

  • Amit Kumar Ball
  • Shibendu Shekhar RoyEmail author
  • Dakshina Ranjan Kisku
  • Naresh Chandra Murmu
Regular Paper
  • 50 Downloads

Abstract

Electrohydrodynamic (EHD) inkjet is one of the non-contact jet based promising technology to fabricate high-resolution features of functional materials with higher efficiency. Uniformity of the deposited droplets is one of the key demands of the EHD inkjet system for printing micro-features in microsensors, printed flexible electronics or various MEMS devices. In this study, a new methodology has been proposed to model the uniformity grade of the deposited droplets. In this present work, a significant improvement in the printing quality has been achieved with the help of some modern optimization methods coupled with some traditional statistical methods. Instead of a single fixed solution (may or may not be feasible), the proposed methodology suggests a feasible region with a large set of solutions. It extends the operators’ flexibility to choose from a wide range of input parameters which yield droplet depositions with higher uniformity. The proposed methodology is further evaluated with some experimental runs to fabricate discrete dots and continuous line patterns. This method is considered to be a promising and effective alternative offline approach to increase the uniformity of the droplets.

Keywords

Electrohydrodynamic (EHD) inkjet printing Response surface methodology Central composite design Grey relational analysis Nature-inspired algorithms Particle swarm optimization Firefly algorithm Biogeography-based optimization Genetic algorithm 

Abbreviations

A

Standoff height

B

Applied voltage

C

Ink flow rate

E

Electric field strength

R2

Coefficient of determination

BBO

Biogeography based optimization

COTS

Commercial off-the-shelf technology

CCD

Central composite design

DOD

Drop-on-demand

DOE

Design of experiments

DDSL

Dissimilar distance from the desired straight line

DCCD

Dissimilar center to center distance

DDD

Dissimilar droplet diameter

EHD

Electrohydrodynamic

FA

Firefly algorithm

GRC

Grey relation coefficient

GRG

Grey relation grade

GA

Genetic algorithm

PSO

Particle swarm optimization

RSM

Response surface methodology

Notes

Acknowledgements

This research work financially sponsored by the Department of Science and Technology (Government of India, Order No DST/TSG/AMT/2015/342, dated 28.07.2016) India. The authors would like to express their gratitude to the Director, NIT Durgapur and the Director, CSIR-CMERI Durgapur for their continuous support and encouragement to carry out the present research work.

References

  1. 1.
    Smithers, P. www.smitherspira.com. Accessed Apirl 20, 2019.
  2. 2.
    Das, R., Ghaffarzadeh, K., He, X. (2017). Printed, organic & flexible electronics forecasts, players & opportunities 2017–2027. In: IDTechEx. www.idtechex.com. Accessed 20 April 2019.
  3. 3.
    Mishra, S., Barton, K. L., Alleyne, A. G., Ferreira, P. M., & Rogers, J. A. (2010). High-speed and drop-on-demand printing with a pulsed electrohydrodynamic jet. Journal of Micromechanics and Microengineering,20, 095026.  https://doi.org/10.1088/0960-1317/20/9/095026.CrossRefGoogle Scholar
  4. 4.
    Park, J.-U., Hardy, M., Kang, S. J., Barton, K., Adair, K., Mukhopadhyay, D. K., et al. (2007). High-resolution electrohydrodynamic jet printing. Nature Materials,6, 782–789.  https://doi.org/10.1038/nmat1974.CrossRefGoogle Scholar
  5. 5.
    Onses, M. S., Sutanto, E., Ferreira, P. M., Alleyne, A. G., & Rogers, J. A. (2015). Mechanisms, capabilities, and applications of high-resolution electrohydrodynamic jet printing. Small (Weinheim an der Bergstrasse, Germany),11, 4237–4266.  https://doi.org/10.1002/smll.201500593.CrossRefGoogle Scholar
  6. 6.
    Yin, Z., Huang, Y., Bu, N., Wang, X., & Xiong, Y. (2010). Inkjet printing for flexible electronics: Materials, processes and equipments. Chinese Science Bulletin,55, 3383–3407.  https://doi.org/10.1007/s11434-010-3251-y.CrossRefGoogle Scholar
  7. 7.
    Korvink, J. G., Smith, P. J., & Shin, D.-Y. (2012). Inkjet-based micromanufacturing. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.CrossRefGoogle Scholar
  8. 8.
    Xu, L., Wang, X., Lei, T., Sun, D., & Lin, L. (2011). Electrohydrodynamic deposition of polymeric droplets under low-frequency pulsation. Langmuir,27, 6541–6548.  https://doi.org/10.1021/la201107j.CrossRefGoogle Scholar
  9. 9.
    Youn, D.-H., Kim, S.-H., Yang, Y.-S., Lim, S.-C., Kim, S.-J., Ahn, S.-H., et al. (2009). Electrohydrodynamic micropatterning of silver ink using near-field electrohydrodynamic jet printing with tilted-outlet nozzle. Applied Physics A,96, 933–938.  https://doi.org/10.1007/s00339-009-5262-7.CrossRefGoogle Scholar
  10. 10.
    An, S., Lee, M. W., Kim, N. Y., Lee, C., Al-Deyab, S. S., James, S. C., et al. (2014). Effect of viscosity, electrical conductivity, and surface tension on direct-current-pulsed drop-on-demand electrohydrodynamic printing frequency. Applied Physics Letters,105, 214102.  https://doi.org/10.1063/1.4902241.CrossRefGoogle Scholar
  11. 11.
    Yu, M., Ahn, K. H., & Lee, S. J. (2016). Design optimization of ink in electrohydrodynamic jet printing: Effect of viscoelasticity on the formation of Taylor cone jet. Materials and Design,89, 109–115.  https://doi.org/10.1016/j.matdes.2015.09.141.CrossRefGoogle Scholar
  12. 12.
    Cloupeau, M., & Prunet-Foch, B. (1994). Electrohydrodynamic spraying functioning modes: a critical review. Journal of Aerosol Science,25, 1021–1036.  https://doi.org/10.1016/0021-8502(94)90199-6.CrossRefGoogle Scholar
  13. 13.
    Jaworek, A., & Krupa, A. (1999). Classification of the modes of EHD spraying. Journal of Aerosol Science,30, 873–893.  https://doi.org/10.1016/S0021-8502(98)00787-3.CrossRefGoogle Scholar
  14. 14.
    Choi, H. K., Park, J.-U., Park, O. O., Ferreira, P. M., Georgiadis, J. G., & Rogers, J. A. (2008). Scaling laws for jet pulsations associated with high-resolution electrohydrodynamic printing. Applied Physics Letters,92, 123109.  https://doi.org/10.1063/1.2903700.CrossRefGoogle Scholar
  15. 15.
    De La Mora, J. F., & Loscertales, I. G. (1994). The current emitted by highly conducting Taylor cones. Journal of Fluid Mechanics,260, 155–184.  https://doi.org/10.1017/S0022112094003472.CrossRefGoogle Scholar
  16. 16.
    Lee, M. W., Kang, D. K., Kim, N. Y., Kim, H. Y., James, S. C., & Yoon, S. S. (2012). A study of ejection modes for pulsed-DC electrohydrodynamic inkjet printing. Journal of Aerosol Science,46, 1–6.  https://doi.org/10.1016/j.jaerosci.2011.11.002.CrossRefGoogle Scholar
  17. 17.
    Choi, J., Kim, Y.-J., Lee, S., Son, S. U., Ko, H. S., Nguyen, V. D., et al. (2008). Drop-on-demand printing of conductive ink by electrostatic field induced inkjet head. Applied Physics Letters,93, 193508.  https://doi.org/10.1063/1.3020719.CrossRefGoogle Scholar
  18. 18.
    Jayasinghe, S. N., Edirisinghe, M. J., & De Wilde, T. (2002). A novel ceramic printing technique based on electrostatic atomization of a suspension. Material Research Innovations,6, 92–95.  https://doi.org/10.1007/s10019-002-0192-4.CrossRefGoogle Scholar
  19. 19.
    Jayasinghe, S. N., & Edirisinghe, M. J. (2005). Electrostatic atomization of a ceramic suspension at pico-flow rates. Applied Physics A,80, 399–404.  https://doi.org/10.1007/s00339-003-2324-0.CrossRefGoogle Scholar
  20. 20.
    Lee, A., Jin, H., Dang, H.-W., Choi, K.-H., & Ahn, K. H. (2013). Optimization of experimental parameters to determine the jetting regimes in electrohydrodynamic printing. Langmuir,29, 13630–13639.  https://doi.org/10.1021/la403111m.CrossRefGoogle Scholar
  21. 21.
    Mahalingam, S., & Edirisinghe, M. J. (2007). Characteristics of electrohydrodynamically prepared titanium dioxide films. Applied Physics A,89, 987–993.  https://doi.org/10.1007/s00339-007-4232-1.CrossRefGoogle Scholar
  22. 22.
    Yang, Y. J., Kim, H. C., Sajid, M., Kim, S. W., Aziz, S., Choi, Y. S., et al. (2018). Drop-on-demand electrohydrodynamic printing of high resolution conductive micro patterns for MEMS repairing. International Journal of Precision Engineering and Manufacturing,19, 811–819.  https://doi.org/10.1007/s12541-018-0097-9.CrossRefGoogle Scholar
  23. 23.
    Kim, Y.-J., Kim, S., Hwang, J., & Kim, Y.-J. (2013). Drop-on-demand hybrid printing using a piezoelectric MEMS printhead at various waveforms, high voltages and jetting frequencies. Journal of Micromechanics and Microengineering,23, 065011.  https://doi.org/10.1088/0960-1317/23/6/065011.CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Ball, A. K., Das, R., Das, D., Roy, S. S., & Murmu, N. C. (2018). Design, development and experimental investigation of e-jet based additive manufacturing process. Materials Today Proceedings,5, 7355–7362.  https://doi.org/10.1016/j.matpr.2017.11.405.CrossRefGoogle Scholar
  26. 26.
    Ball, A. K., Das, R., Roy, S. S., Kisku, D. R., & Murmu, N. C. (2019). Experimentation modelling and optimization of electrohydrodynamic inkjet microfabrication approach: a Taguchi regression analysis. Sādhanā,44, 167.  https://doi.org/10.1007/s12046-019-1146-5.MathSciNetCrossRefGoogle Scholar
  27. 27.
    Montgomery, D. C. (2012). Design and analysis of experiments (8th ed.). Hoboken: Wiley.Google Scholar
  28. 28.
    Deng, J. L. (1989). Introduction to grey systems theory. Journal of Grey System,1, 1–24.  https://doi.org/10.1007/978-3-642-16158-2_1.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Ramanujam, R., Muthukrishnan, N., & Raju, R. (2011). Optimization of cutting parameters for turning Al–SiC(10p) MMC using ANOVA and grey relational analysis. International Journal of Precision Engineering and Manufacturing,12, 651–656.  https://doi.org/10.1007/s12541-011-0084-x.CrossRefGoogle Scholar
  30. 30.
    Kuo, Y., Yang, T., & Huang, G.-W. (2008). The use of grey relational analysis in solving multiple attribute decision-making problems. Computer and Industrial Engineering,55, 80–93.  https://doi.org/10.1016/j.cie.2007.12.002.CrossRefGoogle Scholar
  31. 31.
    Pradhan, M. K. (2013). Estimating the effect of process parameters on surface integrity of EDMed AISI D2 tool steel by response surface methodology coupled with grey relational analysis. International Journal of Advanced Manufacturing Technology,67, 2051–2062.  https://doi.org/10.1007/s00170-012-4630-1.CrossRefGoogle Scholar
  32. 32.
    Liu, N., Zhang, Y. F., & Lu, W. F. (2019). Improving energy efficiency in discrete parts manufacturing system using an ultra-flexible job shop scheduling algorithm. International Journal of Precision Engineering and Manufacturing Technology,6, 349–365.  https://doi.org/10.1007/s40684-019-00055-y.CrossRefGoogle Scholar
  33. 33.
    Fung, C.-P. (2003). Manufacturing process optimization for wear property of fiber-reinforced polybutylene terephthalate composites with grey relational analysis. Wear,254, 298–306.  https://doi.org/10.1016/S0043-1648(03)00013-9.CrossRefGoogle Scholar
  34. 34.
    Mandal, N., Doloi, B., & Mondal, B. (2012). Force prediction model of zirconia toughened alumina (ZTA) inserts in hard turning of AISI 4340 steel using response surface methodology. International Journal of Precision Engineering and Manufacturing,13, 1589–1599.  https://doi.org/10.1007/s12541-012-0209-x.CrossRefGoogle Scholar
  35. 35.
    Singh, B. K., Mondal, B., & Mandal, N. (2016). Machinability evaluation and desirability function optimization of turning parameters for Cr2O3 doped zirconia toughened alumina (Cr–ZTA) cutting insert in high speed machining of steel. Ceramic International,42, 3338–3350.  https://doi.org/10.1016/j.ceramint.2015.10.128.CrossRefGoogle Scholar
  36. 36.
    Davis, E., & Ierapetritou, M. (2007). A kriging method for the solution of nonlinear programs with black-box functions. AIChE Journal,53, 2001–2012.  https://doi.org/10.1002/aic.11228.CrossRefGoogle Scholar
  37. 37.
    Kim, J. H., Shin, Y. J., Do, Chun Y., & Kim, J. H. (2018). Design of 100 W regenerative vehicle suspension to harvest energy from road surfaces. International Journal of Precision Engineering and Manufacturing,19, 1089–1096.  https://doi.org/10.1007/s12541-018-0129-5.CrossRefGoogle Scholar
  38. 38.
    Ball, A. K., Das, R., Roy, S. S., Kisku, D. R., & Murmu, N. C. (2019). Modeling of EHD inkjet printing performance using soft computing-based approaches. Soft Computing.  https://doi.org/10.1007/s00500-019-04202-0.CrossRefGoogle Scholar
  39. 39.
    Zhang, C., Chen, Z., Mei, Q., & Duan, J. (2017). Application of particle swarm optimization combined with response surface methodology to transverse flux permanent magnet motor optimization. IEEE Transactions on Magnetics,53, 1–7.  https://doi.org/10.1109/TMAG.2017.2749565.CrossRefGoogle Scholar
  40. 40.
    Baş, D., & Boyacı, İ. H. (2007). Modeling and optimization II: Comparison of estimation capabilities of response surface methodology with artificial neural networks in a biochemical reaction. Journal of Food Engineering,78, 846–854.  https://doi.org/10.1016/j.jfoodeng.2005.11.025.CrossRefGoogle Scholar
  41. 41.
    Goldberg, D. E. (2006). Genetic algorithms in search, optimization and machine learning (1st ed.). New Delhi: Pearson Education.Google Scholar
  42. 42.
    Holland, J. H. (1992). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. Cambridge: MIT Press.CrossRefGoogle Scholar
  43. 43.
    Kennedy, J., Eberhart, R. Particle swarm optimization. In: Proceedings of ICNN’95—international conference on neural networks. IEEE, pp 1942–1948.Google Scholar
  44. 44.
    Yang, X.-S. (2009). Firefly algorithms for multimodal optimization. Stochastic algorithms: Foundations and applications (pp. 169–178). Berlin: Springer.CrossRefGoogle Scholar
  45. 45.
    Yang, X.-S. (2008). Nature-inspired metaheuristic algorithms (2nd ed.). New York: Luniver Press.Google Scholar
  46. 46.
    Simon, D. (2008). Biogeography-based optimization. IEEE Transactions on Evolutionary Computation,12, 702–713.  https://doi.org/10.1109/TEVC.2008.919004.CrossRefGoogle Scholar
  47. 47.
  48. 48.
  49. 49.
    Marginean, I., Nemes, P., & Vertes, A. (2006). Order-chaos-order transitions in electrosprays: The electrified dripping faucet. Physical Review Letters,97, 064502.  https://doi.org/10.1103/PhysRevLett.97.064502.CrossRefGoogle Scholar
  50. 50.
    Eyring, C. F., Mackeown, S. S., & Millikan, R. A. (1928). Fields currents from points. Physical Review,31, 900–909.  https://doi.org/10.1103/PhysRev.31.900.CrossRefGoogle Scholar
  51. 51.
    Collins, R. T., Jones, J. J., Harris, M. T., & Basaran, O. A. (2008). Electrohydrodynamic tip streaming and emission of charged drops from liquid cones. Nature Physics,4, 149–154.  https://doi.org/10.1038/nphys807.CrossRefGoogle Scholar
  52. 52.
    Harris, M. T., & Basaran, O. A. (1993). Capillary electrohydrostatics of conducting drops hanging from a nozzle in an electric field. Journal of Colloid and Interface Science,161, 389–413.  https://doi.org/10.1006/jcis.1993.1482.CrossRefGoogle Scholar
  53. 53.
    Barton, K., Mishra, S., Alleyne, A., Ferreira, P., & Rogers, J. (2011). Control of high-resolution electrohydrodynamic jet printing. Control Engineering Practice,19, 1266–1273.  https://doi.org/10.1016/j.conengprac.2011.05.009.CrossRefGoogle Scholar
  54. 54.
    Cotton, J., Robinson, A. J., Shoukri, M., & Chang, J. S. (2005). A two-phase flow pattern map for annular channels under a DC applied voltage and the application to electrohydrodynamic convective boiling analysis. International Journal of Heat and Mass Transfer,48, 5563–5579.  https://doi.org/10.1016/j.ijheatmasstransfer.2005.05.032.CrossRefzbMATHGoogle Scholar
  55. 55.
    Lee, S., Byun, D., Jung, D., Choi, J., Kim, Y., Yang, J. H., et al. (2008). Pole-type ground electrode in nozzle for electrostatic field induced drop-on-demand inkjet head. Sensors Actuators A Phys,141, 506–514.  https://doi.org/10.1016/j.sna.2007.08.019.CrossRefGoogle Scholar
  56. 56.
    Myers, H. R., Montgomery, C. Douglas, & Anderson-Cook, M. C. (2009). Response surface methodology: Process and product optimization using designed experiments (3rd ed.). Hoboken: Wiley.zbMATHGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  • Amit Kumar Ball
    • 1
  • Shibendu Shekhar Roy
    • 1
    Email author
  • Dakshina Ranjan Kisku
    • 1
  • Naresh Chandra Murmu
    • 2
  1. 1.National Institute of Technology DurgapurDurgapurIndia
  2. 2.Central Mechanical Engineering Research InstituteDurgapurIndia

Personalised recommendations