Advertisement

Thermo-Mechanical Coupling Modeling of Active Phased Array Antennas

  • Xinyuan Wei
  • Enming MiaoEmail author
  • Yangyang Chen
  • Wei Wang
Regular Paper
  • 64 Downloads

Abstract

The large thermal deformation of the panel in active phased array antennas (APAAs) caused by the thermal power consumption of the internal devices and the change in the ambient temperature in actual operating conditions will result in a considerable decline in the electromagnetic (EM) performance of radar. Experimental research indicates that the thermal deformation of the panel is affected not only by temperature but also by the constraints caused by the installation. Thus, this paper proposes a thermo-mechanical coupling modeling method for an APAA considering the panel temperature and constraints. The coupling model can accurately predict the panel thermal deformation, thereby providing a basis for the compensation of the EM performance of radar. The thermal deformation of the panel is decomposed into a thermal expansion and an offset. Models of the thermal expansion with respect to temperature and the offset with respect to the constraint force are established. The final thermo-mechanical coupling model is obtained by coupling the two models. Experiments verify that the prediction accuracy of the coupling model is 86.3%, which is 21.0% higher than that of a finite element software simulation. The content of this research has practical engineering importance for improving the overall performance of APAAs.

Keywords

Active phased array antenna Panel thermal deformation Constraint force Thermo-mechanical coupling modeling 

Notes

Acknowledgements

This work is supported by the Key Project of the National Natural Science Fund of China (Nos. 51490660/51490661).

References

  1. 1.
    Farina, A., & Timmoneri, L. (2014). Phased array systems for air, land and naval defence applications in selex ES. In 8th European conference on antennas and propagation (EuCAP) (pp. 560–564).Google Scholar
  2. 2.
    Haupt, R. L., & Rahmat-Samii, Y. (2015). Antenna array developments: A perspective on the past, present and future. Antennas and Propagation Magazine IEEE, 57(2), 85–95.CrossRefGoogle Scholar
  3. 3.
    Zimmerman, K. A., & Bell, T. E. (1994). Mounting structure for multi-element phased array antenna. US, US5278574.Google Scholar
  4. 4.
    Wong, H., Chang, S. S., Chang, D. C. D, et al. (1991). AN EHF backplate design for airborne active phased array antennas. In IEEE Mtt-S international microwave symposium digest, 1991. (Vol. 3, pp. 1253–1256).Google Scholar
  5. 5.
    Eom, S. Y., Jeon, S. I., Choi, J. I., et al. (2001). Compact digital phase shifter for active phased array antenna system. In Proceedings of the 2001 SBMO/IEEE MTT-S international microwave and optoelectronics conference, 2001. IMOC 2001. IEEE xplore (Vol. 1, pp. 303–306).Google Scholar
  6. 6.
    Butz, J., Spinnler, M., Christ, J., et al. (2002). Highly integrated RF-modules for Ka-band multiple-beam active phased array antennas. In 2002 IEEE MTT-S international microwave symposium digest (Vol. 1, pp. 61–64).Google Scholar
  7. 7.
    Navarro, J. A. (2003). Antenna-integrated printed wiring board assembly for a phased array antenna system. US, US6670930.Google Scholar
  8. 8.
    Barigelli, A., Ciccognani, W., Colangeli, S., et al. (2013). Development of GaN based MMIC for next generation X-band space SAR T/R module. In Microwave integrated circuits conference (pp. 369–372).Google Scholar
  9. 9.
    Wachs, M. R., Berman, A. L., & Thompson, J. D. (1996). Phased array antenna management system and calibration method: US. US5530449.Google Scholar
  10. 10.
    Vaidyanathan, C., & Sugar, G. L. (2007). Techniques for correcting for phase and amplitude offsets in a MIMO radio device. US, US7236750.Google Scholar
  11. 11.
    Chalumyan, T., Maas, O., Begaud, X., et al. (2017). Active phased antenna arrays calibration method including edge effects and mutual coupling. In European conference on antennas and propagation.Google Scholar
  12. 12.
    Adelman, H. M., & Padula, S. L. (1986). Integrated thermal–structural–electromagnetic design optimization of large space antenna reflectors. Landolt-Börnstein - Group III Condensed Matter, 140(1):143.Google Scholar
  13. 13.
    Du, Z. C., Hou, H. F., Wang, Z. G., et al. (2017). Thermal deformation isolation for satellite platforms via flexible connections. International Journal of Precision Engineering and Manufacturing, 18(12), 1821–1832.CrossRefGoogle Scholar
  14. 14.
    Wang, H. S. C. (1992). Performance of phased-array antennas with mechanical errors. IEEE Transactions on Aerospace and Electronic Systems., 28(2), 535–545.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Takahashi, T., Nakamoto, N., Ohtsuka, M., et al. (2012). On-board calibration methods for mechanical distortions of satellite phased array antennas. IEEE Transactions on Antennas and Propagation, 60(3), 1362–1372.CrossRefGoogle Scholar
  16. 16.
    Parlak, M., & Mcglen, R. J. (2015). Cooling of high power active phased array antenna using axially grooved heat pipe for a space application. In International conference on recent advances in space technologies. IEEE (pp. 743–748).Google Scholar
  17. 17.
    Jonas, F. M. (2000). Thermal management approaches for large planar phased array space antennas. In American Institute of Physics (pp. 815–820).Google Scholar
  18. 18.
    Nakagawa, M., Morikawa, E., Koyama, Y, et al. (2013). Development of Thermal Control for Phased Array Antenna. In International communications satellite systems conference and exhibit (pp. 47–52).Google Scholar
  19. 19.
    Lesueur, G., Caer, D., Merlet, T., & Granger, P. (2009). Active compensation techniques for deformable phased array antenna. Antennas and Propagation, 2009. EuCAP 2009. 3rd European Conference on. IEEE.Google Scholar
  20. 20.
    Wang, C. S., Wang, W., Bao, H., et al. (2008). On coupled structural-electromagnetic modeling and analysis of rectangle active phased array antenna. In IEEE/ASME international conference on advanced intelligent mechatronics (pp. 435–438).Google Scholar
  21. 21.
    Wang, C. S., Duan, B. Y., Zhang, F. S., et al. (2010). Coupled structural–electromagnetic–thermal modelling and analysis of active phased array antennas. IET Microwaves, Antennas and Propagation, 4(2), 247–257.CrossRefGoogle Scholar
  22. 22.
    Wang, C., Kang, M., Wang, Y., et al. (2016). Coupled structural-electromagnetic modeling and analysis of hexagonal active phased array antennas with random errors. AEU––International Journal of Electronics and Communications, 70(5), 592–598.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kuwahara, Y. (1991). Phased array antenna with temperature compensating capability: IEEE, US5072228.Google Scholar
  24. 24.
    Lesueur, G., Gilles, H., Girard, S., et al. (2008). Optical sensor for real-time reconstruction of distortions on electronically steered antenna. IEEE Photonics Technology Letters, 20(21), 1763–1765.CrossRefGoogle Scholar
  25. 25.
    Wang, M., Wang, C. S., & Wei, W. (2014). Estimation for the random errors of reflector surfaces using measured data. International Journal of Precision Engineering and Manufacturing, 15(9), 1839–1846.CrossRefGoogle Scholar
  26. 26.
    Dai, S., & Yin, H. (2013). Several Constraint methods for avoiding thermal stress distortion on structure simulating calculation. In 2013 21st international conference on nuclear engineering. American society of mechanical engineers, V002T03A014.Google Scholar
  27. 27.
    Huizing, A. G. (2003). Design issues of an open scalable architecture for active phased array radars. IEEE International Symposium on Phased Array Systems & Technology. IEEE.Google Scholar
  28. 28.
    Wang, Z., Wang, X., & Lu, J. (2007). Design considerations of the active scalable array antenna. In CIE international conference on radar (pp. 1873–1874–1875–1876).Google Scholar
  29. 29.
    Jang, S., Goh, C. H., & Choi, H. (2015). Multiphase design exploration method for lightweight structural design: Example of vehicle mounted antenna-supporting structure. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(3), 281–287.CrossRefGoogle Scholar
  30. 30.
    Luhmann, H. J., Etzler, C. C., & Wagner, R. (1989). Design and verification of mechanisms for a large foldable antenna. In 23rd aerospace mechanisms symposium (pp. 113–126).Google Scholar
  31. 31.
    Zhang, Z. T., Fang, J. S. (2009). The design of lifting and folding mechanisms for a radar antenna. In Radar Science and Technology, 7(4):312–315 (In Chinese).Google Scholar
  32. 32.
    Pan, M. H., Tang, W. C., Xing, Y., et al. (2017). The clamping position optimization and deformation analysis for an antenna thin wall parts assembly with ASA, MIGA and PSO algorithm. International Journal of Precision Engineering and Manufacturing, 18(3), 345–357.CrossRefGoogle Scholar
  33. 33.
    Liu, S., & Lin, M. (2019). Thermal–mechanical coupling analysis and experimental study on CNC machine tool feed mechanism. International Journal of Precision Engineering and Manufacturing, 20(6), 993–1006.CrossRefGoogle Scholar
  34. 34.
    Miao, E., Gong, Y., Niu, P., Ji, C., & Chen, H. (2013). Robustness of thermal error compensation modeling models of CNC machine tools. The International Journal of Advanced Manufacturing Technology., 69(9), 2593–2603.CrossRefGoogle Scholar
  35. 35.
    En-ming, M., Ya-yun, G., Lian-chun, D., & Ji-chao, M. (2014). Temperature-sensitive point selection of thermal error model of CNC machining center. The International Journal of Advanced Manufacturing Technology., 74(5), 681–691.CrossRefGoogle Scholar
  36. 36.
    Liu, H., Miao, E. M., Wei, X. Y., et al. (2017). Robustness modeling method for thermal error of CNC machine tools based on ridge regression algorithm. International Journal of Machine Tools and Manufacture, 113, 35–48.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringChongqing University of TechnologyChongqingChina
  2. 2.School of Instrument Science and Opto-electronics EngineeringHefei University of TechnologyHefeiChina
  3. 3.Key Laboratory of Electronic Equipment Structure Design, Ministry of EducationXidian UniversityXi’anChina

Personalised recommendations