Performance Indices for the Evaluation of Microgrippers Precision in Grasping and Releasing Phases

  • Serena RuggeriEmail author
  • Gianmauro Fontana
  • Giovanni Legnani
  • Irene Fassi
Regular Paper


In manipulating and assembly tasks, the gripper plays a fundamental role. Tasks at the microscale are particularly challenging due to the possible effect of unwanted stiction. Many different grasping tools (generally called microgrippers) have been developed and are described in literature. The differences rely on size, shape, exchanged forces with the manipulated parts and working principle depending on the application field. Despite the large number of research and industrial cases, each author has developed different and not comparable procedures and indices to assess the device grasping and releasing performance. Therefore, the paper proposes a formalization of methods and indices for the evaluation of the performance of a generic contact microgripper in terms of precision in grasping and releasing and successful rate. This review could be helpful to support the design or the choice of the most suitable gripper according to the properties of the components to be manipulated, the task requirements and the system constraints (i.e., according to the application requirements). The validity of the proposed methodologies and indices is confirmed by theory and experimental data analysis.


Grasping Microgripper Microrobotics Performance indices Releasing 



This work was partially supported by Regione Lombardia under the Accordo Quadro CNR—Regione Lombardia.


  1. 1.
    Calli, B., Walsman, A., Singh, A., Srinivasa, S., Abbeel, P., & Dollar, A. M. (2015). Benchmarking in manipulation research: using the Yale-CMU-Berkeley object and model set. IEEE Robotics and Automation Magazine, 22(3), 36–52.CrossRefGoogle Scholar
  2. 2.
    Pagano, C., & Fassi, I. (2017). Introduction to Miniaturisation. In I. Fassi & D. Shipley (Eds.), Micro-manufacturing technologies and their applications—A theoretical and practical guide (pp. 1–22). Berlin: Springer.Google Scholar
  3. 3.
    Chen, B. K., Zhang, Y., & Sun, Y. (2009). Active release of microobjects using a MEMS microgripper to overcome adhesion forces. Journal of Microelectromechanical Systems, 18(3), 652–659.CrossRefGoogle Scholar
  4. 4.
    Heriban, D., & Gauthier, M. (2008). Robotic micro-assembly of microparts using a piezogripper. In 2008 IEEE/RSJ international conference on intelligent robots and systems, Nice, France (pp. 4042–4047).Google Scholar
  5. 5.
    Nah, S. K., & Zhong, Z. W. (2007). A microgripper using piezoelectric actuation for micro-object manipulation. Sensors and Actuators, A: Physical, 133(1), 218–224.CrossRefGoogle Scholar
  6. 6.
    Park, J., & Moon, W. (2003). A hybrid-type micro-gripper with an integrated force sensor. Microsystem Technologies, 9(8), 511–519.CrossRefGoogle Scholar
  7. 7.
    Chen, T., Sun, L., Chen, L., Rong, W., & Li, X. (2010). A hybrid-type electrostatically driven microgripper with an integrated vacuum tool. Sensors and Actuators, A: Physical, 158(2), 320–327.CrossRefGoogle Scholar
  8. 8.
    Biganzoli, F., & Fantoni, G. (2008). A self-centering electrostatic microgripper. Journal of Microelectromechanical Systems, 27, 136–144.Google Scholar
  9. 9.
    Gauthier, M., Lopez-Walle, B., & Clévy, C. (2005). Comparison between micro-objects manipulations in dry and liquid mediums. In 2005 IEEE international symposium on computational intelligence in robotics and automation, Espoo, Finland (pp. 707–712).Google Scholar
  10. 10.
    Chen, G., Huang, X., & Wang, M. (2005). Research on vacuum gripper based on fuzzy control for micromanipulators. Journal of Control Theory and Applications, 3(3), 295–301.CrossRefGoogle Scholar
  11. 11.
    Dafflon, M., & Clavel, R. (2010). Toward a precise micromanipulation. In M. Gauthier & S. Régnier (Eds.), Robotic microassembly (pp. 145–188). Hoboken: Wiley.Google Scholar
  12. 12.
    Zhang, Y., Chen, B. K., Liu, X., & Sun, Y. (2010). Autonomous robotic pick-and-place of microobjects. IEEE Transaction on Robotics, 26(1), 200–207.CrossRefGoogle Scholar
  13. 13.
    Rong, W., Fan, Z., Wang, L., Xie, H., & Sun, L. (2014). A vacuum microgripping tool with integrated vibration releasing capability. Review of Scientific Instruments, 85(8), 085002.CrossRefGoogle Scholar
  14. 14.
    Ruggeri, S., Fontana, G., Pagano, C., Fassi, I., & Legnani, G. (2012). Handling and manipulation of microcomponents: work-cell design and preliminary experiments. In S. Ratchev (Ed.), Precision assembly technologies and systems. IPAS 2012. IFIP advances in information and communication technology (Vol. 371, pp. 65–72). Berlin: Springer.Google Scholar
  15. 15.
    Fontana, G., Ruggeri, S., Legnani, G., & Fassi, I. (2014). Precision handling of electronic components for PCB rework. In S. Ratchev (Ed.), Precision assembly technologies and systems. IPAS 2014. IFIP advances in information and communication technology (Vol. 435, pp. 52–60). Berlin: Springer.Google Scholar
  16. 16.
    Verotti, M., Dochshanov, A., & Belfiore, N. P. (2017). A comprehensive survey on microgrippers design: Mechanical structure. ASME Journal of Mechanical Design, 139(6), 060801.CrossRefGoogle Scholar
  17. 17.
    Dochshanov, A., Verotti, M., & Belfiore, N. P. (2017). A comprehensive survey on microgrippers design: operational strategy. ASME Journal of Mechanical Design, 139(7), 070801.CrossRefGoogle Scholar
  18. 18.
    Student. (1908). Probable error of a correlation coefficient. Biometrika, 6(2–3), 302–310.CrossRefGoogle Scholar
  19. 19.
    McPherson, G. (1990). Statistics in scientific investigation: Its basis, application and interpretation. New York: Springer.CrossRefzbMATHGoogle Scholar
  20. 20.
    Ruggeri, S., Fontana, G., Fassi, I., & Legnani, G., Performance evaluation methods for microgrippers. In ASME 2014 international design engineering technical conferences and computers and information in engineering conference, Buffalo, NY, USA (Vol. 4, p. V004T09A022).Google Scholar
  21. 21.
    Fontana G., Ruggeri S., Fassi I., & Legnani G. (2014). A mini work-cell for handling and assembling microcomponents. Assembly Automation, 34(1), 27–33.CrossRefGoogle Scholar
  22. 22.
    Fontana G., Ruggeri S., Legnani G., & Fassi I. (2018). Unconventional calibration strategies for micromanipulation work-cells. Robotica, 36(12), 1897–1919.CrossRefGoogle Scholar
  23. 23.
    Fontana, M. (2014). Valutazione delle prestazioni di dispositivi di presa per micromanipolazione (Performance evaluation of micromanipulation gripping devices), Bachelor thesis, University of Brescia, Italy.Google Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA)National Research Council of ItalyMilanItaly
  2. 2.Department of Mechanical and Industrial EngineeringUniversity of BresciaBresciaItaly

Personalised recommendations