Tribological Properties of Ti–4Si–xZr–yY2O3/5TiO2 Composites Prepared by High-Energy Milling, Cold Pressing and Sintering

  • Vitus Mwinteribo Tabie
  • Xiaodong Shi
  • Jianwei Li
  • Chengbin Cai
  • Xiaojing XuEmail author
Regular Paper


In the present study, tribological properties of Ti–4Si–xZr–yY2O3/5TiO2 were investigated. Four composites; Ti–4Si/5TiO2, Ti–4Si–1.3Zr/5TiO2, Ti–4Si–0.3Y2O3/5TiO2 and Ti–4Si–1.3Zr–0.3Y2O3/5TiO2 were fabricated by high-energy milling and cold pressing method. The composites showed enhanced wear and friction resistance against Si3N4 spheres counterface. The hardness and wear resistance of the composite increased with the addition of rare earth and Zirconium. Ti–4Si–1.3Zr–0.3Y2O3/5TiO2 composite has the smallest wear scar (222 μm) showing good wear resistance. Fatigue wear, supplemented by abrasive, oxidative and adhesive wears were identified as the predominant wear mechanisms. The study also found that rare earth Y2O3 can significantly improve the wear resistance of composites as it reduces the friction coefficient of Ti–4Si–1.3Zr/5TiO2 composite by about 25%.


Ti–Si alloy matric composites Microstructure Tribological properties 



The authors would like to acknowledge the financial support of Jiangsu Provincial Industrial Science and Technology Support Program (Grant No. BE2008118) and the Basic Research on Isotropic Ultra-high Strength Aluminum Matrix Composite (Grant No. 6140922010201).


  1. 1.
    Peters, M., Kumpfert, J., Ward, C. H., & Leyens, C. (2003). Titanium alloys for aerospace applications. Advanced Engineering Materials, 5(6), 419–427.CrossRefGoogle Scholar
  2. 2.
    Bhattacharjee, A., Saha, B., & Williams, J. (2017). Titanium alloys: part 1—physical metallurgy and processing. In N. E. Prasad & R. J. H. Wanhill (Eds.), Aerospace materials and material technologies (pp. 91–115). Berlin: Springer.CrossRefGoogle Scholar
  3. 3.
    Tang, K. K. (2013). Fracture control over thermal–mechanical creep and fatigue crack growth in near-alpha titanium alloy. Engineering Fracture Mechanics, 110, 300–313.CrossRefGoogle Scholar
  4. 4.
    M’Saoubi, R., Axinte, D., Soo, S. L., Nobel, C., Attia, H., et al. (2015). High performance cutting of advanced aerospace alloys and composite materials. CIRP Annals, 64(2), 557–580.CrossRefGoogle Scholar
  5. 5.
    Klocke, F., Soo, S. L., Karpuschewski, B., Webster, J. A., Novovic, D., et al. (2015). Abrasive machining of advanced aerospace alloys and composites. CIRP Annals, 64(2), 581–604.CrossRefGoogle Scholar
  6. 6.
    Moskalewicz, T., Dubiel, B., & Wendler, B. (2013). AlCuFe(Cr) and AlCoFeCr coatings for improvement of elevated temperature oxidation resistance of a near-α titanium alloy. Materials Characterization, 83, 161–169.CrossRefGoogle Scholar
  7. 7.
    Singh, P., Pungotra, H., & Kalsi, N. S. (2017). On the characteristics of titanium alloys for the aircraft applications. Materials Today: Proceedings, 4(8), 8971–8982.Google Scholar
  8. 8.
    Huang, X., Li, Z. X., & Huang, H. (2011). Recent development of new high-temperature titanium alloys for high thrust-weight ratio aero-engines. Materials China, 30, 21–27.Google Scholar
  9. 9.
    Liu, Y., Jin, T., & Chai, L. (2018). Present situation and prospect of 600 ℃ high-temperature titanium alloys. Materials Reports, 32(11), 1863–1869.Google Scholar
  10. 10.
    Tkachenko, S., Nečas, D., Datskevich, O., Čupera, J., Spotz, Z., et al. (2016). Tribological performance of Ti–Si-based in situ composites. Tribology Transactions, 59(2), 340–351.CrossRefGoogle Scholar
  11. 11.
    Du, J., Liu, J., Fu, H. Q., Li, B. H., & Wu, Q. (2014). Recent progress in titanium silicide nanowires: properties, preparations and applications. Applied Mechanics and Materials, 446–447, 50–54.Google Scholar
  12. 12.
    Makhtari, A., La Via, F., Raineri, V., Calcagno, L., & Frisina, F. (2001). Structural characterisation of titanium silicon carbide reaction. Microelectronic Engineering, 55(1), 375–381.CrossRefGoogle Scholar
  13. 13.
    Zhan, Y., Zhang, X., Hu, J., Guo, Q., & Du, Y. (2009). Evolution of the microstructure and hardness of the Ti–Si alloys during high temperature heat-treatment. Journal of Alloys and Compounds, 479(1), 246–251.CrossRefGoogle Scholar
  14. 14.
    Amirian, B., Li, H. Y., & Hogan, J. D. (2019). An experimental and numerical study of novel nano-grained (γ + α2)-TiAl/Al2O3 cermets. Materials Science and Engineering A, 744, 570–580.CrossRefGoogle Scholar
  15. 15.
    Yamaguchi, M., Inui, H., & Ito, K. (2000). High-temperature structural intermetallics. Acta Materialia, 48(1), 307–322.CrossRefGoogle Scholar
  16. 16.
    Kim, Y.-W., & Dimiduk, D. M. (1991). Progress in the understanding of gamma titanium aluminides. JOM Journal of the Minerals Metals and Materials Society, 43(8), 40–47.CrossRefGoogle Scholar
  17. 17.
    Budinski, K. G. (1991). Tribological properties of titanium alloys. Wear, 151(2), 203–217.CrossRefGoogle Scholar
  18. 18.
    Yang, Y., Zhang, C., Wang, Y., Dai, Y., & Luo, J. (2016). Friction and wear performance of titanium alloy against tungsten carbide lubricated with phosphate ester. Tribology International, 95, 27–34.CrossRefGoogle Scholar
  19. 19.
    Choubey, A., Basu, B., & Balasubramaniam, R. (2004). Tribological behaviour of Ti-based alloys in simulated body fluid solution at fretting contacts. Materials Science and Engineering A, 379(1), 234–239.CrossRefGoogle Scholar
  20. 20.
    Zhao, X., Xue, G., & Liu, Y. (2018). Dry sliding tribological behavior of TC11 titanium alloy subjected to the ultrasonic impacting and rolling process. Metals, 8(1), 13.CrossRefGoogle Scholar
  21. 21.
    Dong, H. (2010). Tribological properties of titanium-based alloys. In H. Dong (Ed.), Surface engineering of light alloys (pp. 58–80). Amsterdam: Elsevier.CrossRefGoogle Scholar
  22. 22.
    Revankar, G. D., Shetty, R., Rao, S. S., & Gaitonde, V. N. (2017). Wear resistance enhancement of titanium alloy (Ti–6Al–4V) by ball burnishing process. Journal of Materials Research and Technology, 6(1), 13–32.CrossRefGoogle Scholar
  23. 23.
    Chauhan, S. R., & Dass, K. (2013). Dry sliding wear behaviour of titanium (grade 5) alloy by using response surface methodology. Advances in Tribology, 2013, 9.CrossRefGoogle Scholar
  24. 24.
    Wang, Z., Xiao, Z., Huang, C., Wen, L., & Zhang, W. (2017). Influence of Ultrasonic surface rolling on microstructure and wear behavior of selective laser melted Ti–6Al–4V alloy. Materials, 10(10), 1203.CrossRefGoogle Scholar
  25. 25.
    Mordyuk, B. N., Prokopenko, G. I., Milman, Y. V., Iefimov, M. O., Grinkevych, K. E., et al. (2014). Wear assessment of composite surface layers in Al–6Mg alloy reinforced with AlCuFe quasicrystalline particles: Effects of particle size, microstructure and hardness. Wear, 319(1), 84–95.CrossRefGoogle Scholar
  26. 26.
    Ma, F., Shi, Z., Liu, P., Li, W., Liu, X., et al. (2016). Strengthening effect of in situ TiC particles in Ti matrix composite at temperature range for hot working. Materials Characterization, 120, 304–310.CrossRefGoogle Scholar
  27. 27.
    Huang, L. J., Geng, L., Xu, H. Y., & Peng, H. X. (2011). In situ TiC particles reinforced Ti6Al4V matrix composite with a network reinforcement architecture. Materials Science and Engineering A, 528(6), 2859–2862.CrossRefGoogle Scholar
  28. 28.
    Tijo, D., Waghmare, D. T., Kaladharan, D., & Masanta, M. (2018). Effect of TiC content on sliding wear behavior of TiC–Ti metal matrix composite. Materials Today: Proceedings, 5(9), 19848–19853.Google Scholar
  29. 29.
    Cai, C., Song, B., Qiu, C., Li, L., Xue, P., et al. (2017). Hot isostatic pressing of in situ TiB/Ti–6Al–4V composites with novel reinforcement architecture, enhanced hardness and elevated tribological properties. Journal of Alloys and Compounds, 710, 364–374.CrossRefGoogle Scholar
  30. 30.
    Ma, F., Lu, S., Liu, P., Li, W., Liu, X., et al. (2017). Microstructure and mechanical properties variation of TiB/Ti matrix composite by thermo-mechanical processing in beta phase field. Journal of Alloys and Compounds, 695, 1515–1522.CrossRefGoogle Scholar
  31. 31.
    Prasad, K., Sarkar, R., Kamat, S. V., & Nandy, T. K. (2011). Fracture toughness and low cycle fatigue behaviour in boron modified Timetal 834 titanium alloy. Materials Science and Engineering A, 529, 74–80.CrossRefGoogle Scholar
  32. 32.
    Adegbenjo, A. O., Obadele, B. A., & Olubambi, P. A. (2018). Densification, hardness and tribological characteristics of MWCNTs reinforced Ti6Al4V compacts consolidated by spark plasma sintering. Journal of Alloys and Compounds, 749, 818–833.CrossRefGoogle Scholar
  33. 33.
    Shabgard, M., & Khosrozadeh, B. (2017). Investigation of carbon nanotube added dielectric on the surface characteristics and machining performance of Ti–6Al–4V alloy in EDM process. Journal of Manufacturing Processes, 25, 212–219.CrossRefGoogle Scholar
  34. 34.
    Li, J., Luo, X., & Li, G. J. (2014). Effect of Y2O3 on the sliding wear resistance of TiB/TiC-reinforced composite coatings fabricated by laser cladding. Wear, 310(1), 72–82.CrossRefGoogle Scholar
  35. 35.
    Das, A. K., Shariff, S. M., & Choudhury, A. R. (2016). Effect of rare earth oxide (Y2O3) addition on alloyed layer synthesized on Ti–6Al–4V substrate with Ti + SiC + h-BN mixed precursor by laser surface engineering. Tribology International, 95, 35–43.CrossRefGoogle Scholar
  36. 36.
    Yazdi, R., & Kashani-Bozorg, S. F. (2015). Microstructure and wear of in situ Ti/(TiN + TiB) hybrid composite layers produced using liquid phase process. Materials Chemistry and Physics, 152, 147–157.CrossRefGoogle Scholar
  37. 37.
    Xue, B., Yunxue, J., Xuan, L., & Yanan, C. (2018). Friction and wear performance of in-situ (TiC + TiB)/Ti6Al4V composites. Rare Metal Materials and Engineering, 47(12), 3624–3628.CrossRefGoogle Scholar
  38. 38.
    Belei, C., Fitseva, V., dos Santos, J. F., Alcântara, N. G., & Hanke, S. (2017). TiC particle reinforced Ti–6Al–4V friction surfacing coatings. Surface & Coatings Technology, 329, 163–173.CrossRefGoogle Scholar
  39. 39.
    Adebiyi, D. I., & Popoola, A. P. I. (2015). Mitigation of abrasive wear damage of Ti–6Al–4V by laser surface alloying. Materials and Design, 74, 67–75.CrossRefGoogle Scholar
  40. 40.
    Fleming, D., O’Neill, L., Byrne, G., Barry, N., & Dowling, D. P. (2011). Wear resistance enhancement of the titanium alloy Ti–6Al–4V via a novel co-incident microblasting process. Surface & Coatings Technology, 205(21), 4941–4947.CrossRefGoogle Scholar
  41. 41.
    Winstone, M. R., Rawlings, R. D., & West, D. R. F. (1975). The creep behaviour of some silicon-containing titanium alloys. Journal of the Less Common Metals, 39(2), 205–217.CrossRefGoogle Scholar
  42. 42.
    Tian, Y. X., Guo, J. T., Sheng, L. Y., Cheng, G. M., Zhou, L. Z., et al. (2008). Microstructures and mechanical properties of cast Nb–Ti–Si–Zr alloys. Intermetallics, 16(6), 807–812.CrossRefGoogle Scholar
  43. 43.
    Qiao, Y., Guo, X., & Zeng, Y. (2017). Study of the effects of Zr addition on the microstructure and properties of Nb–Ti–Si based ultrahigh temperature alloys. Intermetallics, 88, 19–27.CrossRefGoogle Scholar
  44. 44.
    Jarfors, A. E. W., Butler, D. L., & Goi, K. L. S. (2014). Microstructure formation of porous sintered Ti–Si–Zr compacts with mechanically alloyed-activated Ti–Si and TiH2 powders. Journal of Alloys and Compounds, 594, 202–210.CrossRefGoogle Scholar
  45. 45.
    Nuthalapati, M., Karak, D. S., Chakravarty, D., & Basu, A. (2016). Development of nano-Y2O3 dispersed Zr alloys by mechanical alloying and spark plasma sintering. Materials Science and Engineering A, 650, 145–153.CrossRefGoogle Scholar
  46. 46.
    Tabie, V. M., Shi, X., Li, J., Cai, C., Li, C., et al. (2019). High temperature oxidation and corrosion resistances of Ti–4Si–xZr–yY2O3/5TiO2 composites prepared by high-energy milling and cold pressed sintering. Materials Research Express, 6(8), 086535.CrossRefGoogle Scholar
  47. 47.
    Fan, J., Li, X., Su, Y., Guo, J., & Fu, H. (2010). Dependency of microhardness on solidification processing parameters and microstructure characteristics in the directionally solidified Ti–46Al–0.5W–0.5Si alloy. Journal of Alloys and Compounds, 504(1), 60–64.CrossRefGoogle Scholar
  48. 48.
    Mathabathe, M. N., Bolokang, A. S., Govender, G., Mostert, R. J., & Siyasiya, C. W. (2018). Structure-property orientation relationship of a γ/α2/Ti5Si3 in as-cast Ti–45Al–2Nb–0.7Cr–0.3Si intermetallic alloy. Journal of Alloys and Compounds, 765, 690–699.CrossRefGoogle Scholar
  49. 49.
    Jiao, Y., Huang, L. J., Wei, S. L., Geng, L., Qian, M. F., et al. (2018). Nano-Ti5Si3 leading to enhancement of oxidation resistance. Corrosion Science, 140, 223–230.CrossRefGoogle Scholar
  50. 50.
    Liu, Y., Chen, J., & Zhou, Y. (2009). Effect of Ti5Si3 on wear properties of Ti3Si(Al)C2. Journal of the European Ceramic Society, 29(16), 3379–3385.CrossRefGoogle Scholar
  51. 51.
    Xu, J., Liu, L., Jiang, L., Munroe, P., & Xie, Z.-H. (2013). Unraveling the mechanical and tribological properties of a novel Ti5Si3/TiC nanocomposite coating synthesized by a double glow discharge plasma technique. Ceramics International, 39(8), 9471–9481.CrossRefGoogle Scholar
  52. 52.
    Zhuang, Q., Zhang, P., Li, M., Yan, H., Yu, Z., et al. (2017). Microstructure, wear resistance and oxidation behavior of Ni–Ti–Si coatings fabricated on Ti6Al4V by laser cladding. Materials (Basel, Switzerland), 10(11), 1248.CrossRefGoogle Scholar
  53. 53.
    Yu, W., Tian, J., Tian, W., Zhao, J., Li, Y., et al. (2015). Study of yttrium and cerium on the oxidation resistance of silicide coatings prepared on Ti–6Al–4V alloy by pack-cementation process. Journal of Rare Earths, 33(2), 221–226.CrossRefGoogle Scholar
  54. 54.
    Tian, J., Yu, W. H., Tian, W., Zhao, J., Li, Y. Q., et al. (2015). Effects of Y–Ce on wear behaviours of silicide coatings. Surface Engineering, 31(4), 289–294.CrossRefGoogle Scholar
  55. 55.
    Kubatík, T. F. (2016). High-temperature oxidation of silicide-aluminide layer on the TiAl6V4 alloy prepared by liquid-phase siliconizing. Materiali in Tehnologije, 50(2), 257–261.CrossRefGoogle Scholar
  56. 56.
    Zhang, P., Meng, F., Gong, Z., Ji, G., Cui, S., et al. (2013). First-principles study of structure and properties of ω-Ti2Zr. Computational Materials Science, 74, 129–137.CrossRefGoogle Scholar
  57. 57.
    Fan, D., Wang, W., Huang, J., Cui, B., Zhao, X., et al. (2014). Microstructure and mechanical performance of the brazed joints of Cf/SiC composite and Ti alloy with Ti–Zr–Be. In International conference on brazing, soldering and special joining technologies Beijing, China.Google Scholar
  58. 58.
    Maddala, D., & Hebert, R. J. (2011). Effect of notch toughness and hardness on sliding wear of Cu50Hf41.5Al8.5 bulk metallic glass. Scripta Materialia, 65(7), 630–633.CrossRefGoogle Scholar
  59. 59.
    Rojacz, H., Birkelbach, F., Widder, L., & Varga, M. (2017). Scale adhesion, scratch and fracture behaviour of different oxides formed on iron based alloys at 700 °C. Wear, 380–381, 126–136.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  • Vitus Mwinteribo Tabie
    • 1
  • Xiaodong Shi
    • 1
  • Jianwei Li
    • 1
  • Chengbin Cai
    • 1
  • Xiaojing Xu
    • 1
    Email author
  1. 1.Institute for Advanced Manufacturing and Modern Equipment TechnologyJiangsu UniversityZhenjiangPeople’s Republic of China

Personalised recommendations