Advertisement

Robotic Machining: A Review of Recent Progress

  • Seong Hyeon Kim
  • Eunseok Nam
  • Tae In Ha
  • Soon-Hong Hwang
  • Jae Ho Lee
  • Soo-Hyun Park
  • Byung-Kwon MinEmail author
Review Paper
  • 66 Downloads

Abstract

The use of industrial robots is widespread in diverse manufacturing fields. Hence, there have been attempts to use robot for machining processes instead of machine tools. However, limited machining accuracy has been a major obstacle hampering the adoption of robotic machining systems. Recently, substantial research has been carried out to address this issue. In this paper, recent progress in robotic machining has been summarized, such as kinematic calibration and compliance error compensation to improve the accuracy of robotic machining. Auxiliary units for improving the performance of robotic machining systems are also discussed.

Keywords

Manufacturing system Robot manipulator Industrial robot 

Notes

Acknowledgements

This work was supported by the Technology Innovation Program (10053248, Development of Manufacturing System for Carbon Fiber Reinforced Plastics Machining) funded by the Ministry of Trade, Industry & Energy (MOTIE), Korea.

References

  1. 1.
    Chen, Y., & Dong, F. (2013). Robot machining: Recent development and future research issues. International Journal of Advanced Manufacturing Technology, 66(9–12), 1489–1497.Google Scholar
  2. 2.
    Chu, B., Kim, D., & Hong, D. (2008). Robotic automation technologies in construction: A review. International Journal of Precision Engineering and Manufacturing, 9(3), 85–91.Google Scholar
  3. 3.
    Pham, A.-D., & Ahn, H.-J. (2018). High precision reducers for industrial robots driving 4th industrial revolution: State of arts, analysis, design, performance evaluation and perspective. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(4), 519–533.Google Scholar
  4. 4.
    Dieste, J. A., Fernández, A., Roba, D., Gonzalvo, B., & Lucas, P. (2013). Automatic grinding and polishing using spherical robot. Procedia Engineering, 63, 938–946.Google Scholar
  5. 5.
    Feng-yun, L., & Tian-sheng, L. (2005). Development of a robot system for complex surfaces polishing based on CL data. International Journal of Advanced Manufacturing Technology, 26(9), 1132–1137.Google Scholar
  6. 6.
    Tahvilian, A. M., Liu, Z., Champliaud, H., & Hazel, B. (2013). Experimental and finite element analysis of temperature and energy partition to the workpiece while grinding with a flexible robot. Journal of Materials Processing Technology, 213(12), 2292–2303.Google Scholar
  7. 7.
    Burghardt, A., Szybicki, D., Kurc, K., Muszyñska, M., & Mucha, J. (2017). Experimental study of Inconel 718 surface treatment by edge robotic deburring with force control. Strength of Materials, 49(4), 594–604.Google Scholar
  8. 8.
    Güvenç, L., & Srinivasan, K. (1997). An overview of robot-assisted die and mold polishing with emphasis on process modeling. Journal of Manufacturing Systems, 16(1), 48–58.Google Scholar
  9. 9.
    Dai, H., Yuen, K. M., & Elbestawi, M. A. (1993). Parametric modelling and control of the robotic grinding process. International Journal of Advanced Manufacturing Technology, 8(3), 182–192.Google Scholar
  10. 10.
    Haixia, Z., Shoucheng, W., Huiping, Z., Shanqing, L., & Shengxi, W. (2006). Research of polishing robot inverse calibration. In Proceedings of world congress on intelligent control and automation (pp. 2773–2776).Google Scholar
  11. 11.
    Huang, H., Gong, Z. M., Chen, X. Q., & Zhou, L. (2002). Robotic grinding and polishing for turbine-vane overhaul. Journal of Materials Processing Technology, 127(2), 140–145.Google Scholar
  12. 12.
    Ren, X., Kuhlenkötter, B., & Müller, H. (2006). Simulation and verification of belt grinding with industrial robots. International Journal of Machine Tools and Manufacture, 46(7), 708–716.Google Scholar
  13. 13.
    Liu, L., Ulrich, B., & Elbestawi, M. (1990). Robotic grinding force regulation: Design, implementation and benefits. In Proceedings of IEEE international conference on robotics and automation (pp. 258–265).Google Scholar
  14. 14.
    Whitney, D. (1985). Elements of an intelligent robot grinding system. In Proceedings of the third ISRR (pp. 381–387).Google Scholar
  15. 15.
    Takeuchi, Y., Ge, D., & Asakawa, N. (1993). Automated polishing process with a human-like dexterous robot. In Proceedings of IEEE international conference on robotics and automation (pp. 950–956).Google Scholar
  16. 16.
    Kunieda, M., & Nakagawa, T. (1985). Robot-polishing of curved surface with magneto-pressed tool and magnetic force sensor. In Proceedings of the twenty-fifth international machine tool design and research conference (pp. 193–200).Google Scholar
  17. 17.
    Xu, P., Li, B., Cheung, C.-F., & Zhang, J.-F. (2017). Stiffness modeling and optimization of a 3-DOF parallel robot in a serial–parallel polishing machine. International Journal of Precision Engineering and Manufacturing, 18(4), 497–507.Google Scholar
  18. 18.
    Norberto Pires, J., Ramming, J., Rauch, S., & Araújo, R. (2002). Force/torque sensing applied to industrial robotic deburring. Sensor Review, 22(3), 232–241.Google Scholar
  19. 19.
    Michalos, G., Makris, S., Papakostas, N., Mourtzis, D., & Chryssolouris, G. (2010). Automotive assembly technologies review: Challenges and outlook for a flexible and adaptive approach. CIRP Journal of Manufacturing Science and Technology, 2(2), 81–91.Google Scholar
  20. 20.
    Tung, P.-C., Wu, M.-C., & Hwang, Y.-R. (2004). An image-guided mobile robotic welding system for SMAW repair processes. International Journal of Machine Tools and Manufacture, 44(11), 1223–1233.Google Scholar
  21. 21.
    Wu, G., Wang, D., & Dong, H. (2017). Off-line programmed error compensation of an industrial robot in ship hull welding. In Proceedings of intelligent robotics and applications (pp. 135–146).Google Scholar
  22. 22.
    Tsoukantas, G., & Chryssolouris, G. (2008). Theoretical and experimental analysis of the remote welding process on thin, lap-joined AISI 304 sheets. International Journal of Advanced Manufacturing Technology, 35(9), 880–894.Google Scholar
  23. 23.
    Hu, Y., Kang, Y., Wang, X.-C., Li, X.-H., Long, X.-P., Zhai, G.-Y., et al. (2014). Mechanism and experimental investigation of ultra high pressure water jet on rubber cutting. International Journal of Precision Engineering and Manufacturing, 15(9), 1973–1978.Google Scholar
  24. 24.
    Lemma, E., Chen, L., Siores, E., & Wang, J. (2002). Study of cutting fiber-reinforced composites by using abrasive water-jet with cutting head oscillation. Composite Structures, 57(1), 297–303.Google Scholar
  25. 25.
    Biermann, D., Aßmuth, R., Schumann, S., Rieger, M., & Kuhlenkötter, B. (2016). Wet abrasive jet machining to prepare and design the cutting edge micro shape. Procedia CIRP, 45, 195–198.Google Scholar
  26. 26.
    Chen, D., Yuan, P., Wang, T., Cai, Y., & Xue, L. (2018). A compensation method for enhancing aviation drilling robot accuracy based on co-kriging. International Journal of Precision Engineering and Manufacturing, 19(8), 1133–1142.Google Scholar
  27. 27.
    Olsson, T., Haage, M., Kihlman, H., Johansson, R., Nilsson, K., Robertsson, A., et al. (2010). Cost-efficient drilling using industrial robots with high-bandwidth force feedback. Robotics and Computer-Integrated Manufacturing, 26(1), 24–38.Google Scholar
  28. 28.
    Olsson, T., Robertsson, A., & Johansson, R. (2007). Flexible force control for accurate low-cost robot drilling. In Proceedings of IEEE international conference on robotics and automation (pp. 4770–4775).Google Scholar
  29. 29.
    Lin, C.-T., & Wang, M.-J. (1999). Human–robot interaction in an aircraft wing drilling system. International Journal of Industrial Ergonomics, 23(1), 83–94.Google Scholar
  30. 30.
    Bu, Y., Liao, W., Tian, W., Zhang, L., & Dawei, L. I. (2017). Modeling and experimental investigation of Cartesian compliance characterization for drilling robot. International Journal of Advanced Manufacturing Technology, 91(9), 3253–3264.Google Scholar
  31. 31.
    Qin, C., Tao, J., Wang, M., & Liu, C. (2016). A Novel approach for the acquisition of vibration signals of the end effector in robotic drilling. In Proceedings of IEEE international conference on aircraft utility systems (pp. 522–526).Google Scholar
  32. 32.
    Bi, S., & Liang, J. (2011). Robotic drilling system for titanium structures. International Journal of Advanced Manufacturing Technology, 54(5), 767–774.Google Scholar
  33. 33.
    Gao, Y., Wu, D., Dong, Y., Ma, X., & Chen, K. (2017). The method of aiming towards the normal direction for robotic drilling. International Journal of Precision Engineering and Manufacturing, 18(6), 787–794.Google Scholar
  34. 34.
    Antunes Simões, J. F. C. P., Coole, T. J., Cheshire, D. G., & Pires, A. R. (2003). Analysis of multi-axis milling in an anthropomorphic robot, using the design of experiments methodology. Journal of Materials Processing Technology, 135(2), 235–241.Google Scholar
  35. 35.
    Slamani, M., Gauthier, S., & Chatelain, J.-F. (2014). Analysis of trajectory deviation during high speed robotic trimming of carbon-fiber reinforced polymers. Robotics and Computer-Integrated Manufacturing, 30(5), 546–555.Google Scholar
  36. 36.
    Cen, L., & Melkote, S. N. (2017). CCT-based mode coupling chatter avoidance in robotic milling. Journal of Manufacturing Processes, 29, 50–61.Google Scholar
  37. 37.
    Möller, C., Schmidt, H. C., Shah, N. H., & Wollnack, J. (2016). Enhanced absolute accuracy of an industrial milling robot using stereo camera system. Procedia Technology, 26, 389–398.Google Scholar
  38. 38.
    Matsuoka, S.-I., Shimizu, K., Yamazaki, N., & Oki, Y. (1999). High-speed end milling of an articulated robot and its characteristics. Journal of Materials Processing Technology, 95(1), 83–89.Google Scholar
  39. 39.
    Pan, Z., & Zhang, H. (2009). Improving robotic machining accuracy by real-time compensation. In Proceedings of ICROS-SICE inter joint conference (pp. 4289–4294).Google Scholar
  40. 40.
    Reinl, C., Friedmann, M., Bauer, J., Pischan, M., Abele, E., & Von Stryk, O. (2011). Model-based off-line compensation of path deviation for industrial robots in milling applications. In Proceedings of IEEE/ASME international conference on advanced intelligent mechatronics (pp. 367–372).Google Scholar
  41. 41.
    Abele, E., Weigold, M., & Rothenbücher, S. (2007). Modeling and identification of an industrial robot for machining applications. CIRP Annals-Manufacturing Technology, 56(1), 387–390.Google Scholar
  42. 42.
    Karan, B., & Vukobratovic, M. (1994). Calibration and accuracy of manipulation robot models—An overview. Mechanism and Machine Theory, 29(3), 479.Google Scholar
  43. 43.
    Elatta, A., Gen, L. P., Zhi, F. L., Daoyuan, Y., & Fei, L. (2004). An overview of robot calibration. Information Technology Journal, 3(1), 74–78.Google Scholar
  44. 44.
    Hwang, S., Kim, H., Choi, Y., Shin, K., & Han, C. (2017). Design optimization method for 7 DOF robot manipulator using performance indices. International Journal of Precision Engineering and Manufacturing, 18(3), 293–299.Google Scholar
  45. 45.
    Chen, X., Zhang, Q., & Sun, Y. (2019). Model-based compensation and Pareto-optimal trajectory modification method for robotic applications. International Journal of Precision Engineering and Manufacturing.  https://doi.org/10.1007/s12541-019-00124-x.Google Scholar
  46. 46.
    Angelidis, A., & Vosniakos, G. C. (2014). Prediction and compensation of relative position error along industrial robot end-effector paths. International Journal of Precision Engineering and Manufacturing, 15(1), 63–73.Google Scholar
  47. 47.
    Liu, Z., Xu, J., Cheng, Q., Zhao, Y., Pei, Y., & Yang, C. (2018). Trajectory planning with minimum synthesis error for industrial robots using screw theory. International Journal of Precision Engineering and Manufacturing, 19(2), 183–193.Google Scholar
  48. 48.
    Meggiolaro, M. A., Dubowsky, S., & Mavroidis, C. (2005). Geometric and elastic error calibration of a high accuracy patient positioning system. Mechanism and Machine Theory, 40(4), 415–427.zbMATHGoogle Scholar
  49. 49.
    Bogdan, I.-C., & Abba, G. (2009). identification of the servomechanism used for micro-displacement. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems, pp. 1986–1991.Google Scholar
  50. 50.
    Gong, C., Yuan, J., & Ni, J. (2000). Nongeometric error identification and compensation for robotic system by inverse calibration. International Journal of Machine Tools and Manufacture, 40(14), 2119–2137.Google Scholar
  51. 51.
    Zhang, H., Wang, J., Zhang, G., Gan, Z., Pan, Z., Cui, H., et al. (2005). Machining with flexible manipulator: Toward improving robotic machining performance. In Proceedings of IEEE/ASME international conference on advanced intelligent mechatronics (pp. 1127–1132).Google Scholar
  52. 52.
    Marton, L., & Lantos, B. (2009). Friction and backlash measurement and identification method for robotic arms. In Proceedings of international conference on advanced robotics (pp. 1–6).Google Scholar
  53. 53.
    Barker, L. K. (1983). Vector-algebra approach to extract Denavit–Hartenberg parameters of assembled robot arms. NASA Technical Paper.Google Scholar
  54. 54.
    Hayati, S., & Mirmirani, M. (1985). Improving the absolute positioning accuracy of robot manipulators. Journal of Robotic Systems, 2(4), 397–413.Google Scholar
  55. 55.
    Ye, S. H., Wang, Y., Ren, Y. J., & Li, D. K. (2006). Robot calibration using iteration and differential kinematics. Journal of Physics: Conference Series, 48, 1–6.Google Scholar
  56. 56.
    Ha, I.-C. (2008). Kinematic parameter calibration method for industrial robot manipulator using the relative position. Journal of Mechanical Science and Technology, 22(6), 1084–1090.Google Scholar
  57. 57.
    Okamura, K., & Park, F. C. (1996). Kinematic calibration using the product of exponentials formula. Robotica, 14(4), 415–421.Google Scholar
  58. 58.
    Yang, X., Wu, L., Li, J., & Chen, K. (2014). A minimal kinematic model for serial robot calibration using POE formula. Robotics and Computer-Integrated Manufacturing, 30(3), 326–334.Google Scholar
  59. 59.
    Wu, L., Yang, X., Chen, K., & Ren, H. (2015). A minimal POE-based model for robotic kinematic calibration with only position measurements. IEEE Transactions on Automation Science and Engineering, 12(2), 758–763.Google Scholar
  60. 60.
    Cho, Y., Kim, M., Cheong, J., Do, H., & Kyung, J. (2017). Simultaneous identification of kinematic screw and joint compliance of elastic robot manipulators using deflected circular trajectories. In Proceedings of IEEE/ASME international conference on advanced intelligent mechatronics (pp. 382–387).Google Scholar
  61. 61.
    Zhou, J., Nguyen, H. N., & Kang, H. J. (2014). Simultaneous identification of joint compliance and kinematic parameters of industrial robots. International Journal of Precision Engineering and Manufacturing, 15(11), 2257–2264.Google Scholar
  62. 62.
    Jang, J. H., Kim, S. H., & Kwak, Y. K. (2001). Calibration of geometric and non-geometric errors of an industrial robot. Robotica, 19(3), 311–321.Google Scholar
  63. 63.
    Nubiola, A., & Bonev, I. A. (2013). Absolute calibration of an ABB IRB 1600 robot using a laser tracker. Robotics and Computer-Integrated Manufacturing, 29(1), 236–245.Google Scholar
  64. 64.
    Salisbury, J. K. (1980). Active stiffness control of a manipulator in Cartesian coordinates. In Proceedings of IEEE conference on decision and control (pp. 95–100).Google Scholar
  65. 65.
    Klimchik, A., Pashkevich, A., Wu, Y., Caro, S., & Furet, B. (2012). Design of calibration experiments for identification of manipulator elastostaticparameters. Journal of Mechanics Engineering and Automation, 2, 531–542.Google Scholar
  66. 66.
    Yoshikawa, T., & Matsudera, K. (1994). Experimental study on modeling of flexible manipulators using virtual joint model. IFAC Proceedings Volumes, 27(14), 427–432.Google Scholar
  67. 67.
    Caenen, J., & Angue, J. (1990). Identification of geometric and nongeometric parameters of robots. In Proceedings of IEEE international conference on robotics and automation (pp. 1032–1037).Google Scholar
  68. 68.
    Dumas, C., Caro, S., Cherif, M., Garnier, S., & Furet, B. (2012). Joint stiffness identification of industrial serial robots. Robotica, 30(4), 649–659.Google Scholar
  69. 69.
    Klimchik, A., Pashkevich, A., & Chablat, D. (2013). CAD-based approach for identification of elasto-static parameters of robotic manipulators. Finite Elements in Analysis and Design, 75, 19–30.MathSciNetzbMATHGoogle Scholar
  70. 70.
    Corradini, C., Fauroux, J.-C., & Krut, S. (2003). Evaluation of a 4-degree of freedom parallel manipulator stiffness. In Proceedings of world congress in mechanisms and machine science.Google Scholar
  71. 71.
    Bouzgarrou, B., Fauroux, J., Gogu, G., & Heerah, Y. (2004). Rigidity analysis of T3R1 parallel robot with uncoupled kinematics. In Proceedings of international symposium on robotics.Google Scholar
  72. 72.
    Huang, T., Zhao, X., & Whitehouse, D. J. (2002). Stiffness estimation of a tripod-based parallel kinematic machine. IEEE Transactions on Robotics and Automation, 18(1), 50–58.Google Scholar
  73. 73.
    Clinton, C. M., Zhang, G., & Wavering, A. J. (1997). Stiffness modeling of a Stewart-platform-based milling machine. In Transaction of the North America manufacturing research institution of SME (pp. 335–340).Google Scholar
  74. 74.
    Deblaise, D., Hernot, X., & Maurine, P. (2006). A systematic analytical method for PKM stiffness matrix calculation. In Proceedings of IEEE international conference on robotics and automation (pp. 4213–4219).Google Scholar
  75. 75.
    Gosselin, C. (1990). Stiffness mapping for parallel manipulators. IEEE Transactions on Robotics and Automation, 6(3), 377–382.Google Scholar
  76. 76.
    Chen, S.-F. (2003). The 6 × 6 stiffness formulation and transformation of serial manipulators via the CCT theory. In Proceedings of IEEE international conference on robotics and automation (pp. 4042–4047).Google Scholar
  77. 77.
    Chen, S.-F., & Kao, I. (2000). Conservative congruence transformation for joint and Cartesian stiffness matrices of robotic hands and fingers. The International Journal of Robotics Research, 19(9), 835–847.Google Scholar
  78. 78.
    Alici, G., & Shirinzadeh, B. (2005). Enhanced stiffness modeling, identification and characterization for robot manipulators. IEEE Transactions on Robotics, 21(4), 554–564.zbMATHGoogle Scholar
  79. 79.
    Yoshikawa, T., & Hosoda, K. (1996). Modeling of flexible manipulators using virtual rigid links and passive joints. The International Journal of Robotics Research, 15(3), 290–299.Google Scholar
  80. 80.
    Abele, E., Rothenbücher, S., & Weigold, M. (2008). Cartesian compliance model for industrial robots using virtual joints. Production Engineering, 2(3), 339–343.Google Scholar
  81. 81.
    Schneider, U., Momeni-K, M., Ansaloni, M., & Verl, A. (2014). Stiffness modeling of industrial robots for deformation compensation in machining. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (pp. 4464–4469).Google Scholar
  82. 82.
    Marie, S., Courteille, E., & Maurine, P. (2013). Elasto-geometrical modeling and calibration of robot manipulators: Application to machining and forming applications. Mechanism and Machine Theory, 69, 13–43.Google Scholar
  83. 83.
    Lehmann, C., Olofsson, B., Nilsson, K., Halbauer, M., Haage, M., Robertsson, A., et al. (2013). Robot joint modeling and parameter identification using the clamping method. IFAC Proceedings Volumes, 46(9), 813–818.Google Scholar
  84. 84.
    Olabi, A., Damak, M., Bearee, R., Gibaru, O., & Leleu, S. (2012). Improving the accuracy of industrial robots by offline compensation of joints errors. In Proceedings of IEEE international conference on industrial technology (pp. 492–497).Google Scholar
  85. 85.
    Dumas, C., Caro, S., Garnier, S., & Furet, B. (2011). Joint stiffness identification of six-revolute industrial serial robots. Robotics and Computer-Integrated Manufacturing, 27(4), 881–888.Google Scholar
  86. 86.
    Klimchik, A., Ambiehl, A., Garnier, S., Furet, B., & Pashkevich, A. (2017). Efficiency evaluation of robots in machining applications using industrial performance measure. Robotics and Computer-Integrated Manufacturing, 48, 12–29.Google Scholar
  87. 87.
    Slavković, N. R., Milutinović, D. S., Kokotović, B. M., Glavonjić, M. M., Živanović, S. T., & Ehmann, K. F. (2013). Cartesian compliance identification and analysis of an articulated machining robot. FME Transactions, 41(2), 83–95.Google Scholar
  88. 88.
    Klimchik, A., Bondarenko, D., Pashkevich, A., Briot, S., & Furet, B. (2014). Compliance error compensation in robotic-based milling. In Proceedings of informatics in control automation and robotics (pp. 197–216).Google Scholar
  89. 89.
    Klimchik, A., Chablat, D., & Pashkevich, A. (2014). Stiffness modeling for perfect and non-perfect parallel manipulators under internal and external loadings. Mechanism and Machine Theory, 79, 1–28.Google Scholar
  90. 90.
    Klimchik, A., Wu, Y., Caro, S., Furet, B., & Pashkevich, A. (2014). Geometric and elastostatic calibration of robotic manipulator using partial pose measurements. Advanced Robotics, 28(21), 1419–1429.Google Scholar
  91. 91.
    Tyapin, I., Hovland, G., & Brogårdh, T. (2014). Method for estimating combined controller, joint and link stiffnesses of an industrial robot. In Proceedings of IEEE international symposium on robotic and sensors environments (pp. 1–6).Google Scholar
  92. 92.
    Cordes, M., & Hintze, W. (2017). Offline simulation of path deviation due to joint compliance and hysteresis for robot machining. International Journal of Advanced Manufacturing Technology, 90(1–4), 1075–1083.Google Scholar
  93. 93.
    Abele, E., Schützer, K., Bauer, J., & Pischan, M. (2012). Tool path adaption based on optical measurement data for milling with industrial robots. Production Engineering, 6(4–5), 459–465.Google Scholar
  94. 94.
    Tyapin, I., Kaldestad, K. B., & Hovland, G. (2015). Off-line path correction of robotic face milling using static tool force and robot stiffness. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (pp. 5506–5511).Google Scholar
  95. 95.
    Reiner, M., Otter, M., & Ulbrich, H. (2010). modeling and feed-forward control of structural elastic robots. In Proceedings of international conference on numerical analysis and applied mathematics (pp. 378–381).Google Scholar
  96. 96.
    Roesch, O., & Zaeh, M. F. (2014). Fuzzy controller for the compensation of path deviations during robotic milling operations. In Proceedings of IEEE international conference on mechatronics and automation (pp. 192–197).Google Scholar
  97. 97.
    Wang, J., Zhang, H., & Fuhlbrigge, T. (2009). Improving machining accuracy with robot deformation compensation. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (pp. 3826–3831).Google Scholar
  98. 98.
    Zaeh, M. F., & Roesch, O. (2014). Improvement of the machining accuracy of milling robots. Production Engineering, 8(6), 737–744.Google Scholar
  99. 99.
    Lehmann, C., Halbauer, M., Euhus, D., & Overbeck, D. (2012). Milling with industrial robots: Strategies to reduce and compensate process force induced accuracy influences. In Proceedings of IEEE 17th conference on emerging technologies & factory automation (pp. 1–4).Google Scholar
  100. 100.
    Guo, Y., Dong, H., & Ke, Y. (2015). Stiffness-oriented posture optimization in robotic machining applications. Robotics and Computer-Integrated Manufacturing, 35, 69–76.Google Scholar
  101. 101.
    Bu, Y., Liao, W., Tian, W., Zhang, J., & Zhang, L. (2017). Stiffness analysis and optimization in robotic drilling application. Precision Engineering, 49, 388–400.Google Scholar
  102. 102.
    Lin, Y., Zhao, H., & Ding, H. (2017). Posture optimization methodology of 6R industrial robots for machining using performance evaluation indexes. Robotics and Computer-Integrated Manufacturing, 48, 59–72.Google Scholar
  103. 103.
    Lehmann, C., Pellicciari, M., Drust, M., & Gunnink, J. W. (2013). Machining with industrial robots: The COMET project approach. In Proceedings of robotics in smart manufacturing (pp. 27–36).Google Scholar
  104. 104.
    Sörnmo, O., Olofsson, B., Schneider, U., Robertsson, A., & Johansson, R. (2012). Increasing the milling accuracy for industrial robots using a piezo-actuated high-dynamic micro manipulator. In Proceedings of IEEE/ASME international conference on advanced intelligent mechatronics (pp. 104–110).Google Scholar
  105. 105.
    Puzik, A., Meyer, C., & Verl, A. (2010). Robot machining with additional 3-D-piezo-actuation-mechanism for error compensation. In Proceedings of 41st international symposium on robotics and 6th german conference on robotics (pp. 1–7).Google Scholar
  106. 106.
    Schneider, U., Drust, M., Puzik, A., & Verl, A. (2013). Compensation of errors in robot machining with a parallel 3D-piezo compensation mechanism. Procedia CIRP, 7, 305–310.Google Scholar
  107. 107.
    Olofsson, B., Sörnmo, O., Schneider, U., Robertsson, A., Puzik, A., & Johansson, R. (2011). Modeling and control of a piezo-actuated high-dynamic compensation mechanism for industrial robots. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (pp. 4704–4709).Google Scholar
  108. 108.
    Schneider, U., Drust, M., Diaz Posada, J., & Verl, A. (2013). Position control of an industrial robot using an optical measurement system for machining purposes. In Proceedings of international conference on manufacturing research (pp. 307–312).Google Scholar
  109. 109.
    Droll, S. (2014). Real time path correction of industrial robots with direct end-effector feedback from a laser tracker. SAE International Journal of Aerospace, 7(2), 222–228.Google Scholar
  110. 110.
    Moeller, C., Schmidt, H. C., Koch, P., Boehlmann, C., Kothe, S., Wollnack, J., et al. (2017). Real time pose control of an industrial robotic system for machining of large scale components in aerospace industry using laser tracker system. SAE International Journal of Aerospace, 10(2), 100–108.Google Scholar
  111. 111.
    Klimchik, A., & Pashkevich, A. (2018). Robotic manipulators with double encoders: Accuracy improvement based on advanced stiffness modeling and intelligent control. IFAC-PapersOnLine, 51(11), 740–745.Google Scholar
  112. 112.
    Tsai, J., Wong, E., Tao, J., McGee, H. D., & Akeel, H. (2013). Secondary position feedback control of a robot. US8473103B2.Google Scholar
  113. 113.
    Saund, B., & DeVlieg, R. (2013). High accuracy articulated robots with CNC control systems. SAE International Journal of Aerospace, 6(2), 780–784.Google Scholar
  114. 114.
    Devlieg, R. (2011). High-accuracy robotic drilling/milling of 737 inboard flaps. SAE International Journal of Aerospace, 4(2), 1373–1379.Google Scholar
  115. 115.
    Möller, C., Schmidt, H. C., Koch, P., Böhlmann, C., Kothe, S.-M., Wollnack, J., et al. (2017). Machining of large scaled CFRP-parts with mobile CNC-based robotic system in aerospace industry. Procedia Manufacturing, 14, 17–29.Google Scholar
  116. 116.
    Susemihl, H., Brillinger, C., Stürmer, S. P., Hansen, S., Boehlmann, C., Kothe, S., et al. (2017). Referencing strategies for high accuracy machining of large aircraft components with mobile robotic systems. SAE Technical Papers, Part F129883, September, 2017.Google Scholar
  117. 117.
    Logemann, T. (2016). Mobile Robot Assembly Cell (RACe) for drilling and fastening. SAE Technical Papers, October, 2016.Google Scholar
  118. 118.
    Adams, G. (2014). Next generation mobile robotic drilling and fastening systems. SAE Technical Papers, September, 2014.Google Scholar
  119. 119.
    Susemihl, H., Moeller, C., Kothe, S., Schmidt, H. C., Shah, N., Brillinger, C., et al. (2016). High accuracy mobile robotic system for machining of large aircraft components. SAE International Journal of Aerospace, 9(2), 231–238.Google Scholar
  120. 120.
    KUKA. Mobile robotics KMR Quantec. Available, https://www.kuka.com/-/media/kuka-downloads/imported/9cb8e311bfd744b4b0eab25ca883f6d3/kmr-quantec-en.pdf. Accessed 12 June 2019.

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringYonsei UniversitySeoulRepublic of Korea
  2. 2.IT Converged Process R&D GroupKITECHAnsan-siRepublic of Korea
  3. 3.Global Technology Center, Samsung Electronics Co., Ltd.Suwon-siRepublic of Korea

Personalised recommendations