Advertisement

Intuitive Gait Pattern Generation for an Exoskeleton Robot

  • S. H. Hwang
  • S. C. Lee
  • D. B. Shin
  • I. H. Baek
  • M. J. Kim
  • D. I. Sun
  • B. S. Kim
  • S. W. Hwang
  • C. S. HanEmail author
Regular Paper
  • 217 Downloads

Abstract

Exoskeleton robots are being studied and developed in various forms according to user. Among them, the most concentrated area is the lower limb exoskeleton robot for “walking,” which is the basic exercise of paralyzed patients. In this study, we utilize the gait cycle, speed, and stride, which are important dependent factors of gait, and not the control technique that uses the predefined gait pattern using the average value of the gait data of the general person used by the existing rehabilitation exoskeleton robot. By creating an end-point reference using a walking element and inverse kinematics, and by using a dynamic movement primitive technique to learn the gait data of the general public, generating the gait patterns of various walking environments without storing them in advance is possible. In this paper, we applied this method to the exoskeleton robot and show robot to generate various strides gait pattern by experiments.

Keywords

Lower extremity exoskeleton robot Gait pattern generation Rehabilitation robot Dynamic movement primitives 

List of Symbols

\(p_{h} ,p_{k}\)

Position of Pelvis and Knee

\(l_{1}\)

Robot pelvis to knee link length

\(l_{2}\)

Robot knee to foot link length

\(\theta_{h} ,\theta_{k}\)

Joint angle of hip and knee

\(x_{h} ,y_{h} ,x_{k} ,y_{k}\)

Joint position of hip and knee

Notes

Acknowledgements

This paper is the result of the basic research project (NRF-2018R1D1A1B07050021) that was supported by the Korea Research Foundation.

References

  1. 1.
    A. C. o. S. C. o. (2008) Trauma. In ATLS, advanced trauma life support for doctors: student course manual. American College of Surgeons.Google Scholar
  2. 2.
    Esquenazi, A., Talaty, M., Packel, A., & Saulino, M. (2012). The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. American Journal of Physical Medicine & Rehabilitation, 91(11), 911–921.CrossRefGoogle Scholar
  3. 3.
    E. Bionics. (2015). “Ekso,” ed: Recuperado 30/07/2015, de www.eksobionics.com.
  4. 4.
    Yan, T. F., Cempini, M., Oddo, C. M., & Vitiello, N. (2015). Review of assistive strategies in powered lower-limb orthoses and exoskeletons (in English). Robotics and Autonomous Systems, 64, 120–136.CrossRefGoogle Scholar
  5. 5.
    Kazerooni, H., Racine, J.-L., Huang, L., & Steger, R. (2005). On the control of the Berkeley lower extremity exoskeleton (BLEEX). In Proceedings of the 2005 IEEE international conference on Robotics and automation, 2005. ICRA 2005 (pp. 4353–4360). IEEE.Google Scholar
  6. 6.
    Kwa, H. K., Noorden, J. H., Missel, M., Craig, T., Pratt, J. E., & Neuhaus, P. D. (2009). Development of the IHMC mobility assist exoskeleton. In ICRA’09. IEEE international conference on Robotics and Automation, 2009 (pp. 2556–2562). IEEE.Google Scholar
  7. 7.
    Wang, L., Wang, S., van Asseldonk, E. H., & van der Kooij, H. (2013). Actively controlled lateral gait assistance in a lower limb exoskeleton. In 2013 IEEE/RSJ international conference on Intelligent Robots and Systems (IROS) (pp. 965–970). IEEE.Google Scholar
  8. 8.
    Kawamoto, H., et al. (2010) Voluntary motion support control of Robot Suit HAL triggered by bioelectrical signal for hemiplegia. In 2010 annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 462–466). IEEE.Google Scholar
  9. 9.
    Righetti, L., & Ijspeert, A. J. (2006). Programmable central pattern generators: An application to biped locomotion control. In Proceedings 2006 IEEE international conference on Robotics and Automation, 2006. ICRA 2006 (pp. 1585–1590). IEEE.Google Scholar
  10. 10.
    Ronsse, R., et al. (2011). Oscillator-based assistance of cyclical movements: model-based and model-free approaches. Medical & Biological Engineering & Computing, 49(10), 1173.CrossRefGoogle Scholar
  11. 11.
    Passino, K. M., Yurkovich, S., & Reinfrank, M. (1998). Fuzzy control. Citeseer.Google Scholar
  12. 12.
    Schaal, S. (2006). Dynamic movement primitives—A framework for motor control in humans and humanoid robotics. In Adaptive motion of animals and machines (pp. 261–280). Springer.Google Scholar
  13. 13.
    Moon, S. B., et al. (2017). Gait analysis of hemiplegic patients in ambulatory rehabilitation training using a wearable lower-limb robot: A pilot study. International Journal of Precision Engineering and Manufacturing, 18(12), 1773–1781.CrossRefGoogle Scholar
  14. 14.
    Cristopher, M., & Bishop, S. (2006). Pattern recognition and machine learning. London: Springer.zbMATHGoogle Scholar
  15. 15.
    Calinon, S. (2009). Robot programming by demonstration. Lausanne: EPFL Press.Google Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.Department of Mechatronics EngineeringHanyang UniversityAnsan-siRepublic of Korea
  2. 2.Department of Interdisciplinary Engineering SystemHanyang UniversityAnsan-siRepublic of Korea
  3. 3.Industry University Cooperation FoundationHanyang University ERICAAnsan-siRepublic of Korea
  4. 4.Korea Institute of Manufacturing InnovationAnsan-siRepublic of Korea
  5. 5.Department of Robot EngineeringHanyang UniversityAnsan-siRepublic of Korea

Personalised recommendations