Advertisement

Surface Morphologies in Ultra-short Pulsed Laser Processing of Stainless-Steel at High Repetition Rate

  • G. Lazzini
  • L. Gemini
  • A. H. A. Lutey
  • R. Kling
  • L. Romoli
  • M. Allegrini
  • F. FusoEmail author
Regular Paper
  • 63 Downloads

Abstract

Stainless-steel is ablated with femtosecond laser pulses at high repetition rate. A multi-pass, high spatial overlap laser scanning strategy is applied in order to cope with the requirements for large-scale machining of high aspect ratio structures. Topography of the processed surfaces is analyzed via Shear Force Microscopy scans, with the main aim to investigate morphology changes as a function of process parameters. Quantitative assessment of local height variations enables a detailed investigation of the produced features. Depending on the process parameters, in particular on laser fluence and repetition rate, a transition from small islands to large bumps is observed, explained in terms of feature coalescence.

Keywords

Nanostructured surfaces Laser machining Shear force microscopy Directed energy surface treatments 

List of symbols

X

Longitudinal direction of laser scan

Y

Lateral direction of laser scan

RR

Laser repetition rate

v

Laser scan speed

F

Laser fluence

Sq

Root-mean-square roughness

Spd

Surface peak density according to ISO 12178

Ama

Average motif area according to ISO 12178

Sks

Motif mean slope according to ISO 12178

Notes

Acknowledgements

This work has received funding from the EU Horizon 2020 Research and Innovation Programme under Grant Agreement No. 687613 “TresClean”. GL, MA and FF gratefully acknowledge technical assistance with the ShFM setup from Nicola Puccini and Enrico Andreoni.

References

  1. 1.
    Pauleau, Y. (Ed.). (2006). Materials surface processing by directed energy techniques—European materials research society series. Amsterdam: Elsevier.Google Scholar
  2. 2.
    Bhushan, B. (2009). Biomimetics: lessons from nature—An overview. Philosophical Transactions of the Royal Society A, 367, 1445–1486.CrossRefGoogle Scholar
  3. 3.
    Bhushan, B. (2016). Biomimetics: bioinspired hierarchical-structured surfaces for green science and technology. Berlin: Springer.CrossRefGoogle Scholar
  4. 4.
    Yao, X., Song, Y., & Jiang, L. (2011). Applications of bio-inspired special wettable surfaces. Advanced Materials, 23, 719–734.CrossRefGoogle Scholar
  5. 5.
    Kwon, M. H., Jee, W. Y., & Chu, C. N. (2015). Fabrication of hydrophobic surfaces using copper electrodeposition and oxidation. International Journal of Precision Engineering and Manufacturing, 16, 877–882.CrossRefGoogle Scholar
  6. 6.
    Katsikogianni, M., & Missirlis, Y. F. (2004). Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. European Cells & Materials, 8, 37–57.CrossRefGoogle Scholar
  7. 7.
    Lutey, A. H., Gemini, L., Romoli, L., Lazzini, G., Fuso, F., Faucon, M., et al. (2018). Towards laser-textured antibacterial surfaces. Scientific Reports, 8, 1–10.CrossRefGoogle Scholar
  8. 8.
    Wu, D., Wang, J., Wu, S., Chen, Q., Zhao, S., Zhang, H., et al. (2011). Three-level biomimetic rice-leaf surfaces with controllable anisotropic sliding. Advanced Functional Materials, 21, 2927–2932.CrossRefGoogle Scholar
  9. 9.
    Ko, D., Tumbleston, J. R., Henderson, K. J., Euliss, L. E., De Simone, J. M., Lopez, R., et al. (2011). Biomimetic microlens array with antireflective moth-eye surface. Soft Matter, 7, 6404–6407.CrossRefGoogle Scholar
  10. 10.
    Lee, H., Lee, P. B., & Messersmith, P. B. (2007). A reversible wet/dry adhesive inspired by mussels and geckos. Nature, 448, 338–341.CrossRefGoogle Scholar
  11. 11.
    Feng, J., Tuominen, M. T., & Rothstein, J. P. (2011). Hierarchical superhydrophobic surfaces fabricated by dual-scale electron-beam-lithography with well-ordered secondary nanostructures. Advanced Functional Materials, 21, 3715–3722.CrossRefGoogle Scholar
  12. 12.
    Valbusa, U., Boragno, C., & Buatier de Mongeot, F. (2002). Nanostructuring surfaces by ion sputtering. Journal of Physics: Condensed Matter, 14, 8153–8175.Google Scholar
  13. 13.
    D’Acunto, M., Fuso, F., Micheletto, R., Naruse, M., Tantussi, F., & Allegrini, M. (2017). Near-field surface plasmon field enhancement induced by rippled surfaces. Beilstein Journal of Nanotechnology, 8, 956–967.CrossRefGoogle Scholar
  14. 14.
    Lee, C. M., Woo, W. S., Baek, J. T., & Kim, E. J. (2016). Laser and arc manufacturing processes: A review. International Journal of Precision Engineering and Manufacturing, 17, 973–985.CrossRefGoogle Scholar
  15. 15.
    Chichkov, B. N., Momma, C., Nolte, S., von Alvensleben, F., & Tünnermann, A. (1996). Femtosecond, picosecond and nanosecond laser ablation of solids. Applied Physics A, 63, 109–115.CrossRefGoogle Scholar
  16. 16.
    Bonse, J., Hohm, S., Kimer, S. V., Rosenfeld, A., & Kruger, J. (2017). Laser-induced periodic surface structures—A scientific evergreen. IEEE Journal of Selected Topics in Quantum Electronics, 23, 9000615.CrossRefGoogle Scholar
  17. 17.
    Reif, J., Varlamova, O., Uhlig, S., Varlamov, S., & Bestehorn, M. (2014). On the physics of self-organized nanostructure formation upon femtosecond laser ablation. Applied Physics A, 117, 179–184.CrossRefGoogle Scholar
  18. 18.
    Lazzini, G., Romoli, L., Blunt, L., & Gemini, L. (2017). Design and characterization of textured surfaces for applications in the food industry. Surface Topography: Metrology and Properties, 5, 044005.Google Scholar
  19. 19.
    Tantussi, F., Vella, D., Allegrini, M., Fuso, F., Romoli, L., & Rashed, C. A. A. (2015). Shear-force microscopy investigation of roughness and shape of micro-fabricated holes. Precision Engineering, 41, 32–39.CrossRefGoogle Scholar
  20. 20.
    Romoli, L., Rashed, C. A. A., Lovicu, G., Dini, G., Tantussi, F., Fuso, F., et al. (2014). Ultrashort pulsed laser drilling and surface structuring of microholes in stainless steels. CIRP Annals-Manufacturing Technology, 63, 229–232.CrossRefGoogle Scholar
  21. 21.
    Rashed, C. A. A., Romoli, L., Tantussi, F., Fuso, F., Bertoncini, L., Fiaschi, M., et al. (2014). Experimental optimization of micro-electrical discharge drilling process from the perspective of inner surface enhancement measured by shear-force microscopy. CIRP Journal of Manufacturing Science and Technology, 7, 11–19.CrossRefGoogle Scholar
  22. 22.
    Karrai, K., & Tiemann, I. (2000). Interfacial shear force microscopy. Physical Review B, 62, 13174–13181.CrossRefGoogle Scholar
  23. 23.
    Pietroy, D., Di Maio, Y., Moine, B., Baubeau, E., & Audouard, E. (2012). Femtosecond laser volume ablation rate and threshold measurements by differential weighing. Optics Express, 20, 29900–29908.CrossRefGoogle Scholar
  24. 24.
    Momma, C., Chichkov, B. N., Nolte, S., von Alvensleben, F., Tünnermann, A., Welling, H., et al. (1996). Short-pulse laser ablation of solid targets. Optics Communication, 129, 132–134.CrossRefGoogle Scholar
  25. 25.
    Nečas, D., & Klapetek, P. (2012). Gwyddion: An open-source software for SPM data analysis. Central European Journal of Physics, 10, 181–188.Google Scholar
  26. 26.
    Sipe, J. E., Young, J. F., Preston, J. S., & van Driel, H. M. (1983). Laser-induced periodic surface structure. I. Theory. Physical Review B, 27, 1141–1154.CrossRefGoogle Scholar
  27. 27.
    Young, J. F., Preston, J. S., van Driel, H. M., & Sipe, J. E. (1983). Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass. Physical Review B, 27, 1155–1172.CrossRefGoogle Scholar
  28. 28.
    Bonse, J., Hohm, S., Kimer, S. V., Rosenfeld, A., & Kruger, J. (2012). Femtosecond laser-induced periodic surface structures. Journal of Laser Applications, 24, 042006.CrossRefGoogle Scholar
  29. 29.
    Pham, K. X., Tanabe, R., & Ito, Y. (2013). Laser-induced periodic surface structures formed on the sidewalls of microholes trepanned by a femtosecond laser. Applied Physics A, 112, 485–493.CrossRefGoogle Scholar
  30. 30.
    Lazzini, G., Romoli, L., Tantussi, F., & Fuso, F. (2018). Nanostructure patterns on stainless-steel upon ultrafast laser ablation with circular polarization. Optics & Laser Technology, 107, 435–442.CrossRefGoogle Scholar
  31. 31.
    Gemini, L., Hashida, M., Shimizu, M., Miyazaka, Y., Inoue, S., Tokita, S., et al. (2013). Metal-like self-organization of periodic nanostructures on silicon and silicon carbide under femtosecond laser pulses. Journal of Applied Physics, 114, 194903.CrossRefGoogle Scholar
  32. 32.
    Martinez-Calderon, M., Rodriguez, A., Dias-Ponte, A., Morant-Miñana, M. C., Gomez-Aranzadi, M., & Olaizola, S. M. (2016). Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS. Applied Surface Science, 374, 81–89.CrossRefGoogle Scholar
  33. 33.
    Mincuzzi, G., Gemini, L., Faucon, M., & Kling, R. (2016). Extending ultra-short pulse laser texturing over large area. Applied Surface Science, 386, 65–71.CrossRefGoogle Scholar
  34. 34.
    Choi, S. H., Sohn, I. B., & Lee, H. (2012). Femtosecond laser-induced line structuring on mold stainless steel STAVAX with various scanning speeds and two polarization configurations. International Journal of Precision Engineering and Manufacturing, 13, 845–854.CrossRefGoogle Scholar
  35. 35.
    Kam, D. H., Bhattacharya, S., & Mazumder, J. (2012). Control of the wetting properties of an AISI 316L stainless steel surface by femtosecond laser-induced surface modification. Journal of Micromechanics and Microengineering, 22, 105019.CrossRefGoogle Scholar
  36. 36.
    Nayak, B. K., Gupta, M. C., & Kolasinski, K. W. (2008). Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation. Applied Physics A, 90, 399–402.CrossRefGoogle Scholar
  37. 37.
    Nayak, B. K., & Gupta, M. C. (2010). Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation. Optics and Lasers in Engineering, 48, 940–949.CrossRefGoogle Scholar
  38. 38.
    Tsibidis, G. D., Fotakis, C., & Stratakis, E. (2015). From ripples to spikes: A hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures. Physical Review B, 92, 041405(R).CrossRefGoogle Scholar
  39. 39.
    Leach, R. (2013). Introduction to surface topography. In Characterisation of areal surface texture. Springer.Google Scholar
  40. 40.
    Eaton, S. M., Zhang, H., Herman, P. R., Yoshino, F., Shah, L., Bovatsek, J., et al. (2005). Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. Optics Express, 13, 4708–4716.CrossRefGoogle Scholar
  41. 41.
    Marla, D., Barde, V., & Joshi, S. S. (2013). Analytical model to predict temperature distribution and ablation depth in excimer laser micromachining. International Journal of Precision Engineering and Manufacturing, 14, 29–36.CrossRefGoogle Scholar
  42. 42.
    Le Harzic, R., Huot, N., Audouard, E., Jonin, C., Laporte, P., Valette, S., et al. (2002). Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy. Applied Physics Letters, 80, 3886–3888.CrossRefGoogle Scholar
  43. 43.
    Di Niso, F., Gaudiuso, C., Sibillano, T., Mezzapesa, F. P., Ancona, A., & Lugarà, P. M. (2014). Role of heat accumulation on the incubation effect in multi-shot laser ablation of stainless steel at high repetition rates. Optics Express, 22, 12200–12210.CrossRefGoogle Scholar
  44. 44.
    Di Niso, F., Gaudiuso, C., Sibillano, T., Mezzapesa, F. P., Ancona, A., & Lugarà, P. M. (2013). Influence of the repetition rate and pulse duration on the incubation effect in multiple-shots ultrafast laser ablation of steel. Physics Procedia, 41, 698–707.CrossRefGoogle Scholar
  45. 45.
    Güdde, J., Hohlfeld, J., Müller, J. G., & Matthias, E. (1998). Damage threshold dependence on electron-phonon coupling in Au and Ni films. Applied Surface Science, 127–129, 40–45.CrossRefGoogle Scholar
  46. 46.
    Anisimov, S. I., & Luk’yanchuk, B. S. (2002). Selected problems of laser ablation theory. Physics-Uspekhi, 45, 293–324.CrossRefGoogle Scholar
  47. 47.
    Amoruso, S., Bruzzese, R., Wang, X., & Xia, J. (2008). Propagation of a femtosecond pulsed laser ablation plume into a background atmosphere. Applied Physics Letters, 92, 041503.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.Department of Engineering and ArchitectureUniversity of ParmaParmaItaly
  2. 2.ALPhANOVInstitut d’Optique d’AquitaineTalenceFrance
  3. 3.Dipartimento di Fisica Enrico FermiUniversità di PisaPisaItaly
  4. 4.Istituto Nazionale di Ottica, INO-CNRPisaItaly

Personalised recommendations