Advertisement

A Novel Passive Quasi-Zero Stiffness Isolator for Ultra-Precision Measurement Systems

  • Jangheon Kim
  • Youngjun Jeon
  • Sangwoo Um
  • Usung Park
  • Kyung-Soo KimEmail author
  • Soohyun KimEmail author
Regular Paper
  • 103 Downloads

Abstract

In the paper, a novel passive vibration isolator is proposed for an ultra-precision sensing system, utilizing a quasi-zero stiffness (QZS) mechanism. The QZS mechanism implements the high static low dynamic stiffness, which effectively reduces the dynamic force transmission while minimizing the static deflection under the natural frequency of conventional passive isolator. Furthermore, it does not need any electric components; the mechanism is suitable for the ultra-precision sensing systems measuring extremely weak electromagnetic fields. However, nonlinear stiffness and hysteresis caused from the negative stiffness elements degrade the system performance. A vertical spring with a pre-tension and eight horizontal plate springs with nonlinear buckling characteristics constitute the proposed system to solve these problems. The mathematical model compares the negative stiffness design with previous QZS research. The buckled plate spring with ball joint design reduces stiffness variation. Transmissibility of the proposed system for low frequency range is investigated experimentally.

Keywords

Passive QZS isolator Negative stiffness Friction hysteresis Spring contact friction 

Notes

Acknowledgements

This research was supported by the Agency for Defense Development.

References

  1. 1.
    Griggs, C., Moody, M., Norton, R., Paik, H., & Venkateswara, K. (2017). Sensitive superconducting gravity gradiometer constructed with levitated test masses. Physical Review Applied, 8(6), 064024.CrossRefGoogle Scholar
  2. 2.
    Van Trung, P., Kim, K.-R., & Ahn, H.-J. (2013). A nonlinear control of an QZS isolator with flexures based on a lyapunov function. International Journal of Precision Engineering Manufacturing, 14(6), 919–924.CrossRefGoogle Scholar
  3. 3.
    Turnip, A., Park, S., & Hong, K.-S. (2010). Sensitivity control of a MR-damper semi-active suspension. International Journal of Precision Engineering, 11(2), 209–218.CrossRefGoogle Scholar
  4. 4.
    Ibrahim, R. (2008). Recent advances in nonlinear passive vibration isolators. Journal of sound vibration, 314(3–5), 371–452.CrossRefGoogle Scholar
  5. 5.
    Lee, J.-H., & Kim, K.-J. (2007). Modeling of nonlinear complex stiffness of dual-chamber pneumatic spring for precision vibration isolations. Journal of sound vibration, 301(3–5), 909–926.CrossRefGoogle Scholar
  6. 6.
    Johnson, C. D., Wilke, P. S., & Darling, K. R. Multi-axis whole-spacecraft vibration isolation for small launch vehicles. In Smart Structures and Materials 2001: Damping and Isolation, 2001 (Vol. 4331, pp. 153–162): International Society for Optics and Photonics.Google Scholar
  7. 7.
    Le, T. D., & Ahn, K. K. (2011). A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat. Journal of Sound Vibration, 330(26), 6311–6335.CrossRefGoogle Scholar
  8. 8.
    Xu, D., Yu, Q., Zhou, J., & Bishop, S. (2013). Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic. Journal of Sound Vibration, 332(14), 3377–3389.CrossRefGoogle Scholar
  9. 9.
    Shin, K. (2014). On the performance of a single degree-of-freedom high-static-low-dynamic stiffness magnetic vibration isolator. International Journal of Precision Engineering Manufacturing, 15(3), 439–445.  https://doi.org/10.1007/s12541-014-0355-4.CrossRefGoogle Scholar
  10. 10.
    Lan, C.-C., Yang, S.-A., & Wu, Y.-S. (2014). Design and experiment of a compact quasi-zero-stiffness isolator capable of a wide range of loads. Journal of Sound and Vibration, 333(20), 4843–4858.  https://doi.org/10.1016/j.jsv.2014.05.009.CrossRefGoogle Scholar
  11. 11.
    Kim, K.-R., You, Y.-H., & Ahn, H.-J. (2013). Optimal design of a QZS isolator using flexures for a wide range of payload. International Journal of Precision Engineering Manufacturing, 14(6), 911–917.  https://doi.org/10.1007/s12541-013-0120-0.CrossRefGoogle Scholar
  12. 12.
    Wang, X., Zhou, J., Xu, D., Ouyang, H., & Duan, Y. (2017). Force transmissibility of a two-stage vibration isolation system with quasi-zero stiffness. Nonlinear Dynamics, 87(1), 633–646.  https://doi.org/10.1007/s11071-016-3065-x.CrossRefGoogle Scholar
  13. 13.
    Kovacic, I., Brennan, M. J., & Waters, T. P. (2008). A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic. Journal of Sound and Vibration, 315(3), 700–711.  https://doi.org/10.1016/j.jsv.2007.12.019.CrossRefGoogle Scholar
  14. 14.
    Carrella, A., Brennan, M. J., & Waters, T. P. (2007). Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. Journal of Sound and Vibration, 301(3), 678–689.  https://doi.org/10.1016/j.jsv.2006.10.011.CrossRefGoogle Scholar
  15. 15.
    Ahn, H.-J. (2008). Performance limit of a passive vertical isolator using a negative stiffness mechanism. Journal of Mechanical Science Technology, 22(12), 2357.  https://doi.org/10.1007/s12206-008-0930-7.CrossRefGoogle Scholar
  16. 16.
    Huang, X., Chen, Y., Hua, H., Liu, X., & Zhang, Z. (2015). Shock isolation performance of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: Theoretical and experimental study. Journal of Sound and Vibration, 345, 178–196.  https://doi.org/10.1016/j.jsv.2015.02.001.CrossRefGoogle Scholar
  17. 17.
    Liu, X., Huang, X., & Hua, H. (2013). On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector. Journal of Sound and Vibration, 332(14), 3359–3376.  https://doi.org/10.1016/j.jsv.2012.10.037.CrossRefGoogle Scholar
  18. 18.
    Ledezma-Ramirez, D., Guzman-Nieto, M., Tapia-Gonzalez, P., & Ferguson, N. Shock isolation systems using non linear stiffness and damping. In International Conference on Noise and Vibration Engineering, 2014 (pp. 4111–4122).Google Scholar
  19. 19.
    Lang, R. F., & Seidel, W. (2009). Search for dark matter with CRESST. New Journal of Physics, 11(10), 105017.CrossRefGoogle Scholar
  20. 20.
    Virgin, L. N., & Davis, R. B. (2003). Vibration isolation using buckled struts. Journal of Sound and Vibration, 260(5), 965–973.  https://doi.org/10.1016/S0022-460X(02)01177-X.CrossRefGoogle Scholar
  21. 21.
    Rao, S. S., & Yap, F. F. (2011). In M. J. Horton (Ed.), Mechanical vibrations (Vol. 4). Upper Saddle River: Prentice hall.Google Scholar
  22. 22.
    Bratosin, D., & Sireteanu, T. Hysteretic damping modelling by nonlinear Kelvin-Voigt model. In Romanian AcademySeries A: Mathematics, Physics, Technical Sciences, Information Science, 2002 (Vol. 3, pp. 99–104).Google Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
  2. 2.The 3rd R&D Institute, Agency for Defense DevelopmentDaejeonRepublic of Korea

Personalised recommendations