Prediction of Material Properties of Ceramic Composite Material by Porous Structure and Porosity Using the Finite Element Method

  • Dong Gyu Lee
  • Soo-Hyun Kim
  • Seyoung Kim
  • Ji Haeng Yu
  • Seong Wook ChoEmail author
Regular Paper


Recently, the use of ceramic composite materials in various areas has been increasing. However, since detailed structures have various porous structures according to the characteristics of the ceramic composite material, it is difficult to predict material properties through simple material experiments. If the detailed structure of ceramic composite materials were metal or other simple and regular forms, it would be possible to predict material properties through experiments or analysis. However, as porous ceramic materials have an irregular structure and random form, it is very difficult to predict their material properties through simple methods and actual material experiments must be conducted several or even dozens of times to predict the material properties with statistical analysis techniques. Therefore, this study uses FEM to predict the porous type or pore ratio of ceramic composite materials and the changes in material properties according to their detailed structure. It attempt to predict the maximum and minimum values of actual material properties. Through the results of this study, it is possible to more easily predict the material properties of ceramic composite materials by porosity and pore dispersity or adjacency. The results can be applied to the manufacturing of parts and structural analysis of models made from ceramic composite materials.


Ceramic composite materials FEM Material properties OTM Porosity Porous structure 



This work was conducted under the framework of the research and development program of the Korea Institute of Energy Research (B6-2456-03) and by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2018R1D1A1A09084287).


  1. 1.
    Asadi-Eydivand, M., Solati-Hashjin, M., Farzad, A., & Abu Osman, N. A. (2016). Effect of technical parameters on porous structure and strength of 3d printed calcium sulfate prototypes. Robotics and Computer-Integrated Manufacturing, 37, 57–67.CrossRefGoogle Scholar
  2. 2.
    Bruno, G., Efremov, A. M., Levandovskyi, A. N., & Clausen, B. (2010). Connecting the macro- and microstrain responses in technical porous ceramics: Modeling and experimental validations. Journal of Materials Science, 46(1), 161–173.CrossRefGoogle Scholar
  3. 3.
    Cho, Y. J., Lee, W. J., Park, S. K., & Park, Y. H. (2013). Effect of pore morphology on deformation behaviors in porous Al by FEM simulations. Advanced Engineering Materials, 15(3), 166–169.CrossRefGoogle Scholar
  4. 4.
    da Conceição, L., Silva, A. M., Ribeiro, N. F. P., & Souza, M. M. V. M. (2011). Combustion synthesis of La0.7sr0.3co0.5fe0.5o3 (Lscf) porous materials for application as cathode in It-Sofc. Materials Research Bulletin, 46(2), 308–314.CrossRefGoogle Scholar
  5. 5.
    Euser, B., Zhu, H., Berger, J. R., Lewinsohn, C. A., & Kee, R. J. (2017). Electrochemical–mechanical coupling in composite planar structures that integrate flow channels and ion-conducting membranes. Journal of the Electrochemical Society, 164(7), F732–F739.CrossRefGoogle Scholar
  6. 6.
    Garcia-Fayos, J., Vert, V. B., Balaguer, M., Solís, C., Gaudillere, C., & Serra, J. M. (2015). Oxygen transport membranes in a biomass/coal combined strategy for reducing Co2 emissions: Permeation study of selected membranes under different Co2-rich atmospheres. Catalysis Today, 257, 221–228.CrossRefGoogle Scholar
  7. 7.
    Glasscock, J. A., Mikkelsen, L., Persson, Å. H., Pećanac, G., Malzbender, J., Blennow, P., et al. (2013). Porous Fe21cr7al1mo0.5y metal supports for oxygen transport membranes: Thermo-mechanical properties. Sintering and Corrosion Behaviour, Solid State Ionics, 242, 33–44.CrossRefGoogle Scholar
  8. 8.
    Griffiths, D. V., Paiboon, J., Huang, J., & Fenton, G. A. (2012). Homogenization of geomaterials containing voids by random fields and finite elements. International Journal of Solids and Structures, 49(14), 2006–2014.CrossRefGoogle Scholar
  9. 9.
    Häffelin, A., Niedrig, C., Wagner, S. F., Baumann, S., Meulenberg, W. A., & Ivers-Tiffée, E. (2014). Three-dimensional performance model for oxygen transport membranes. Journal of the Electrochemical Society, 161(14), F1409–F1415.CrossRefGoogle Scholar
  10. 10.
    Inge Dahl, P., Fontaine, M.-L., Peters, T., Mei, S., Larring, Y., Henriksen, P. P., et al. (2011). Development and testing of membrane materials and modules for high temperature air separation. Energy Procedia, 4, 1243–1251.CrossRefGoogle Scholar
  11. 11.
    Kim, S., Kim, S. H., Lee, K. S., Yu, J. H., Seong, Y.-H., & Han, I. S. (2017). Mechanical properties of Lscf (La0.6sr0.4co0.2fe0.8o3 − Δ)–Gdc (Ce0.9gd0.1o2 − Δ) for oxygen transport membranes. Ceramics International, 43(2), 1916–1921.CrossRefGoogle Scholar
  12. 12.
    Michailidis, N., Stergioudi, F., Omar, H., Papadopoulos, D., & Tsipas, D. N. (2011). Experimental and FEM analysis of the material response of porous metals imposed to mechanical loading. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 382(1–3), 124–131.CrossRefGoogle Scholar
  13. 13.
    Naddeo, F., Baldino, L., Cardea, S., Naddeo, A., & Reverchon, E. (2018). Finite element multiscale modelling of elastic behavior of cellulose acetate—Graphene oxide nanocomposites, produced using a SC-Co2 assisted technique. The Journal of Supercritical Fluids, 140, 248–257.CrossRefGoogle Scholar
  14. 14.
    Nowak, M., Nowak, Z., Pęcherski, R. B., Potoczek, M., & Śliwa, R. E. (2013). On the reconstruction method of ceramic foam structures and the methodology of young modulus determination. Archives of Metallurgy and Materials, 58(4), 1219–1222.CrossRefGoogle Scholar
  15. 15.
    Panico, M., & Brinson, L. C. (2008). Computational modeling of porous shape memory alloys. International Journal of Solids and Structures, 45(21), 5613–5626.CrossRefzbMATHGoogle Scholar
  16. 16.
    Rahemi, R., & Li, D. (2015). Variation in electron work function with temperature and its effect on the Young’s modulus of metals. Scripta Materialia, 99, 41–44.CrossRefGoogle Scholar
  17. 17.
    Raju, K., Kim, S., Yu, J. H., Kim, S.-H., Seong, Y.-H., & Han, I.-S. (2018). Rietveld refinement and estimation of residual stress in Gdc-Lscf oxygen transport membrane ceramic composites. Ceramics International, 44(9), 10293–10298.CrossRefGoogle Scholar
  18. 18.
    Rezakazemi, M., Ebadi Amooghin, A., Montazer-Rahmati, M. M., Ismail, A. F., & Matsuura, T. (2014). State-of-the-art membrane based Co2 separation using mixed matrix membranes: An overview on current status and future directions. Progress in Polymer Science, 39(5), 817–861.CrossRefGoogle Scholar
  19. 19.
    Shen, H., & Brinson, L. C. (2007). Finite element modeling of porous titanium. International Journal of Solids and Structures, 44(1), 320–335.CrossRefzbMATHGoogle Scholar
  20. 20.
    Tang, C. Y., Tsui, C. P., Lin, W., Uskokovic, P. S., & Wang, Z. W. (2013). Multi-level finite element analysis for progressive damage behavior of HA/PEEK composite porous structure. Composites Part B Engineering, 55, 22–30.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  • Dong Gyu Lee
    • 1
  • Soo-Hyun Kim
    • 2
  • Seyoung Kim
    • 2
  • Ji Haeng Yu
    • 2
  • Seong Wook Cho
    • 1
    Email author
  1. 1.School of Mechanical EngineeringChung-Ang UniversitySeoulRepublic of Korea
  2. 2.Energy Materials LaboratoryKorea Institute of Energy ResearchDaejeonRepublic of Korea

Personalised recommendations