Analysis of Flow and Wall Deformation in a Stenotic Flexible Channel Containing a Soft Core, Simulating Atherosclerotic Arteries

  • Myoung Ho Park
  • Pengsrorn Chhai
  • Kyehan RheeEmail author
Regular Paper


A novel eccentric stenotic channel was manufactured to provide an in vivo physical environment simulating an atherosclerotic artery. It was composed of an elastic wall containing a soft semi-cylindrical volume that simulated a lipid core. Wall strain and fluid shear stress distributions were computed using a finite element method incorporating fluid structure interaction. The particle image velocity measurement method was extended to measure wall deformation and wall deformation and flow velocity were simultaneously measured to validate the computational method. The maximum deformation was found to occur in the distal shoulder, while the maximum flow wall shear stress was skewed to the proximal shoulder of the lipid core. Measured maximum wall deformations and flow velocities agreed with the computational results within a 10% margin of error. The wall shear stress on the stenotic wall varied from 0 to 1.2 Pa. The maximum shear strain in the longitudinal plane and the normal strain in the transverse plane for the Core 1 model (Young’s modulus 50 kPa) were 3.8% and 0.7%, respectively. The maximum shear and normal wall strains for the Core 2 model (Young’s modulus 200 kPa) were 34% and 14% lower. These wall stress and strain values corresponded with those found in human atherosclerotic arteries. The developed channel could provide spatial and temporal variations as well as magnitudes of wall shear stress and strain observed in atherosclerotic arteries.


Stenotic channel Atherosclerotic plaque Lipid core elasticity Wall deformation Fluid structure interaction Particle image analysis 



This work was supported by the Research Fund (NRF-2017R1A2B4004439).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interests.


  1. 1.
    Davies, P. F. (1995). Flow-mediated endothelial mechanotransduction. Physiological Reviews, 75(3), 519–560.CrossRefGoogle Scholar
  2. 2.
    Dhawan, S. S., Avati Nanjundappa, R. P., Branch, J. R., Taylor, W. R., Quyyumi, A. A., Jo, H., et al. (2010). Shear stress and plaque development. Expert Review of Cardiovascular Therapy, 8(4), 545–556.CrossRefGoogle Scholar
  3. 3.
    Koskinas, K. C., Chatzizisis, Y. S., Baker, A. B., Edelman, E. R., Stone, P. H., & Feldman, C. L. (2009). The role of low endothelial shear stress in the conversion of atherosclerotic lesions from stable to unstable plaque. Current Opinion in Cardiology, 24(6), 580–590.CrossRefGoogle Scholar
  4. 4.
    Giddens, D. P., Zarins, C. K., & Glagov, S. (1993). The role of fluid mechanics in the localization and detection of atherosclerosis. Journal of Biomechanical Engineering, 115(4B), 588–594.CrossRefGoogle Scholar
  5. 5.
    Glagov, S., Bassiouny, H. S., Giddens, D. P., & Zarins, C. K. (1995). Pathobiology of plaque modeling and complication. Surgical Clinics of North America, 75(4), 545–556.CrossRefGoogle Scholar
  6. 6.
    Dai, G., Kaazempur-Mofrad, M. R., Natarajan, S., Zhang, Y., Vaughn, S., Blackman, B. R., et al. (2004). Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and-resistant regions of human vasculature. Proceedings of the National Academy of Sciences, 101(41), 14871–14876.CrossRefGoogle Scholar
  7. 7.
    Slager, C. J., Wentzel, J. J., Gijsen, F. J. H., Schuurbiers, J. C. H., Van der Wal, A. C., Van der Steen, A. F. W., et al. (2005). The role of shear stress in the generation of rupture-prone vulnerable plaques. Nature Reviews Cardiology, 2(8), 401–407.Google Scholar
  8. 8.
    Mattsson, E. J., Kohler, T. R., Vergel, S. M., & Clowes, A. W. (1997). Increased blood flow induces regression of intimal hyperplasia. Arteriosclerosis, Thrombosis, and Vascular Biology, 17(10), 2245–2249.CrossRefGoogle Scholar
  9. 9.
    Birukov, K. G., Bardy, N., Lehoux, S., Merval, R., Shirinsky, V. P., & Tedgui, A. (1998). Intraluminal pressure is essential for the maintenance of smooth muscle caldesmon and filamin content in aortic organ culture. Arteriosclerosis, Thrombosis, and Vascular Biology, 18(6), 922–927.CrossRefGoogle Scholar
  10. 10.
    Chapman, G. B., Durante, W., Hellums, J. D., & Schafer, A. I. (2000). Physiological cyclic stretch causes cell cycle arrest in cultured vascular smooth muscle cells. American Journal of Physiology-Heart and Circulatory Physiology, 278(3), H748–H754.CrossRefGoogle Scholar
  11. 11.
    Wallace, C. S., Champion, J. C., & Truskey, G. A. (2007). Adhesion and function of human endothelial cells co-cultured on smooth muscle cells. Annals of Biomedical Engineering, 35(3), 375–386.CrossRefGoogle Scholar
  12. 12.
    McWhorter, F. Y., Davis, C. T., & Liu, W. F. (2015). Physical and mechanical regulation of macrophage phenotype and function. Cellular and Molecular Life Sciences, 72(7), 1303–1316.CrossRefGoogle Scholar
  13. 13.
    Ballotta, V., Driessen-Mol, A., Bouten, C. V., & Baaijens, F. P. (2014). Strain-dependent modulation of macrophage polarization within scaffolds. Biomaterials, 35(18), 4919–4928.CrossRefGoogle Scholar
  14. 14.
    Kim, K., Han, D. Y., Chang, K., & Lee, W. G. (2018). Design and manufacturing of a uniform, massively parallel fluid distributor for automated cell culture bioreactor. International Journal of Precision Engineering and Manufacturing, 19(3), 417–424.CrossRefGoogle Scholar
  15. 15.
    Hwang, J., Cho, Y. H., Park, M. S., & Kim, B. H. (2019). Microchannel fabrication on glass materials for microfluidic devices. International Journal of Precision Engineering and Manufacturing, 20(3), 479–495.CrossRefGoogle Scholar
  16. 16.
    Ruel, J., Lemay, J., Dumas, G., Doillon, C., & Charara, J. (1995). Development of a parallel plate flow chamber for studying cell behavior under pulsatile flow. ASAIO Journal, 41(4), 876–883.CrossRefGoogle Scholar
  17. 17.
    Bacabac, R. G., Smit, T. H., Cowin, S. C., Van Loon, J. J., Nieuwstadt, F. T., Heethaar, R., et al. (2005). Dynamic shear stress in parallel-plate flow chambers. Journal of Biomechanics, 38(1), 159–167.CrossRefGoogle Scholar
  18. 18.
    Chappell, D. C., Varner, S. E., Nerem, R. M., Medford, R. M., & Alexander, R. W. (1998). Oscillatory shear stress stimulates adhesion molecule expression in cultured human endothelium. Circulation Research, 82(5), 532–539.CrossRefGoogle Scholar
  19. 19.
    Brown, T. D. (2000). Techniques for mechanical stimulation of cells in vitro: a review. Journal of Biomechanics, 33(1), 3–14.CrossRefGoogle Scholar
  20. 20.
    Chau, L., Doran, M., & Cooper-White, J. (2009). A novel multishear microdevice for studying cell mechanics. Lab on a Chip, 9(13), 1897–1902.CrossRefGoogle Scholar
  21. 21.
    Heo, K. S., Fujiwara, K., & Abe, J. I. (2014). Shear stress and atherosclerosis. Molecules and Cells, 37(6), 435–440.CrossRefGoogle Scholar
  22. 22.
    Redmond, E. M., Cahill, P. A., & Sitzmann, J. V. (1995). Perfused transcapillary smooth muscle and endothelial cell co-culture—A novelin vitro model. Vitro Cellular & Developmental Biology-Animal, 31(8), 601–609.CrossRefGoogle Scholar
  23. 23.
    Matsumoto, T., Yung, Y. C., Fischbach, C., Kong, H. J., Nakaoka, R., & Mooney, D. J. (2007). Mechanical strain regulates endothelial cell patterning in vitro. Tissue Engineering, 13(1), 207–217.CrossRefGoogle Scholar
  24. 24.
    Gerstmair, A., Fois, G., Innerbichler, S., Dietl, P., & Felder, E. (2009). A device for simultaneous live cell imaging during uni-axial mechanical strain or compression. Journal of Applied Physiology, 107, 613–620.CrossRefGoogle Scholar
  25. 25.
    Lee, J., Wong, M., Smith, Q., & Baker, A. B. (2013). A novel system for studying mechanical strain waveform-dependent responses in vascular smooth muscle cells. Lab on a Chip, 13(23), 4573–4582.CrossRefGoogle Scholar
  26. 26.
    Berardi, D. E., & Tarbell, J. M. (2009). Stretch and shear interactions affect intercellular junction protein expression and turnover in endothelial cells. Cellular and Molecular Bioengineering, 2(3), 320–331.CrossRefGoogle Scholar
  27. 27.
    Punchard, M. A., O’Cearbhaill, E. D., Mackle, J. N., McHugh, P. E., Smith, T. J., Stenson-Cox, C., et al. (2009). Evaluation of human endothelial cells post stent deployment in a cardiovascular simulator in vitro. Annals of Biomedical Engineering, 37(7), 1322–1330.CrossRefGoogle Scholar
  28. 28.
    Estrada, R., Giridharan, G. A., Nguyen, M. D., Prabhu, S. D., & Sethu, P. (2011). Microfluidic endothelial cell culture model to replicate disturbed flow conditions seen in atherosclerosis susceptible regions. Biomicrofluidics, 5(3), 032006.CrossRefGoogle Scholar
  29. 29.
    Keane, R. D., & Adrian, R. J. (1992). Theory of cross-correlation analysis of PIV images. Applied Scientific Research, 49(3), 191–215.CrossRefGoogle Scholar
  30. 30.
    Sadek, S., Iskander, M. G., & Liu, J. (2003). Accuracy of digital image correlation for measuring deformations in transparent media. Journal of Computing in Civil Engineering, 17(2), 88–96.CrossRefGoogle Scholar
  31. 31.
    Sabass, B., Gardel, M. L., Waterman, C. M., & Schwarz, U. S. (2008). High resolution traction force microscopy based on experimental and computational advances. Biophysical Journal, 94(1), 207–220.CrossRefGoogle Scholar
  32. 32.
    Ng, S. S., Li, C., & Chan, V. (2011). Experimental and numerical determination of cellular traction force on polymeric hydrogels. Interface focus, 1(5), 777–791.CrossRefGoogle Scholar
  33. 33.
    Kang, M. J., & Rhee, K. (2017). Computation of stress field in a polymer scaffold from optically measured deformation field using particle images. International Journal of Precision Engineering and Manufacturing, 18(7), 1021–1026.CrossRefGoogle Scholar
  34. 34.
    Charonko, J., Karri, S., Schmieg, J., Prabhu, S., & Vlachos, P. (2009). In vitro, time-resolved PIV comparison of the effect of stent design on wall shear stress. Annals of Biomedical Engineering, 37(7), 1310–1321.CrossRefGoogle Scholar
  35. 35.
    Wang, Z., Volinsky, A. A., & Gallant, N. D. (2014). Crosslinking effect on polydimethylsiloxane elastic modulus measured by custom-built compression instrument. Journal of Applied Polymer Science, 131(22), 41050.CrossRefGoogle Scholar
  36. 36.
    Gijsen, F., van der Giessen, A., van der Steen, A., & Wentzel, J. (2013). Shear stress and advanced atherosclerosis in human coronary arteries. Journal of Biomechanics, 46(2), 240–247.CrossRefGoogle Scholar
  37. 37.
    Li, Y. S. J., Haga, J. H., & Chien, S. (2005). Molecular basis of the effects of shear stress on vascular endothelial cells. Journal of Biomechanics, 38(10), 1949–1971.CrossRefGoogle Scholar
  38. 38.
    Polacheck, W. J., Li, R., Uzel, S. G., & Kamm, R. D. (2013). Microfluidic platforms for mechanobiology. Lab on a Chip, 13(12), 2252–2267.CrossRefGoogle Scholar
  39. 39.
    Maurice, R. L., Fromageau, J., Brusseau, É., Finet, G., Rioufol, G., & Cloutier, G. (2007). On the potential of the lagrangian estimator for endovascular ultrasound elastography: In vivo human coronary artery study. Ultrasound in Medicine and Biology, 33(8), 1199–1205.CrossRefGoogle Scholar
  40. 40.
    Lee, R. T., Schoen, F. J., Loree, H. M., Lark, M. W., & Libby, P. (1996). Circumferential stress and matrix metalloproteinase 1 in human coronary atherosclerosis: implications for plaque rupture. Arteriosclerosis, Thrombosis, and Vascular Biology, 16(8), 1070–1073.CrossRefGoogle Scholar
  41. 41.
    Chung, S., Sudo, R., Mack, P. J., Wan, C. R., Vickerman, V., & Kamm, R. D. (2009). Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab on a Chip, 9(2), 269–275.CrossRefGoogle Scholar
  42. 42.
    Zheng, Y., Chen, J., Craven, M., Choi, N. W., Totorica, S., Diaz-Santana, A., et al. (2012). In vitro microvessels for the study of angiogenesis and thrombosis. Proceedings of the National Academy of Sciences, 109(24), 9342–9347.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringMyongji UniversityYongin-siSouth Korea

Personalised recommendations