Advertisement

Optimization Design and Fabrication of Polymer Micro Needle by Hot Embossing Method

  • Samir Sghayer AbubakerEmail author
  • Yajun Zhang
Regular Paper
  • 51 Downloads

Abstract

This paper presents the design, fabrication and testing of a solid polymer microneedle. Mechanical behavior of the microneedle was simulated by ANSYS via the results of suffered and strength calculations. The results shows, that the maximum stresses of polymer MNs is far less than 3.183 MPa, which is the allowable pressure needed. Taguchi method was used help in data analysis and prediction of optimum parameter settings, a series of experiments were conducted to verify the impact of embossing temperature, embossing pressure, and embossing time on the microneedle’s quality. According to the result from the Taguchi experiment, S/N ratio is calculated to find the best combination settings for microneedle’s height. The highest value of S/N ratio (54.403) for product height is determined as optimal initial parameter settings, achieved by 130 °C, 11 MPa and 150 s for PMMA microneedle with optimized size of 550 µm height, 250 µm base diameter and 50 µm tip diameter. Embossing temperature and embossing pressure are the significant parameters in the experiment. The proposed method was verified by a set of experiments, the force for insertion as well as the modes of mechanical failure were examined.

Keywords

Bending and buckling forces Hot embossing Mechanical behavior Polymer micro-needle Taguchi method 

Notes

References

  1. 1.
    Ganesan, A. V., Kumar, H., Swaminathan, S., Singh, K. K., Joy, R. A., Sood, N., et al. (2014). Analysis of MEMS-based microneedles for blood monitoring. Bionanoscience, 4(2), 128–135.CrossRefGoogle Scholar
  2. 2.
    Kaushik, S., Hord, A. H., Denson, D. D., McAllister, D. V., Smitra, S., Allen, M. G., et al. (2001). Lack of pain associated with microfabricated microneedles. Anesthesia & Analgesia, 92(2), 502–504.CrossRefGoogle Scholar
  3. 3.
    Prausnitz, M. R., & Langer, R. (2008). Transdermal drug delivery. Nature Biotechnology, 26(11), 1261.CrossRefGoogle Scholar
  4. 4.
    Prausnitz, M. R. (2001). Analysis: Overcoming skin’s barrier: The search for effective and user-friendly drug delivery. Diabetes Technology & Therapeutics, 3(2), 233–236.CrossRefGoogle Scholar
  5. 5.
    Fukushima, K., Yamazaki, T., Hasegawa, R., Ito, Y., Sugioka, N., & Takada, K. (2010). Pharmacokinetic and pharmacodynamic evaluation of insulin dissolving microneedles in dogs. Diabetes Technology & Therapeutics, 12(6), 465–474.CrossRefGoogle Scholar
  6. 6.
    Khanna, P., Strom, J. A., Malone, J. I., & Bhansali, S. (2008). Microneedle-based automated therapy for diabetes mellitus. Journal of Diabetes Science and Technology, 2(6), 1122–1129.CrossRefGoogle Scholar
  7. 7.
    Sullivan, S. P., Koutsonanos, D. G., del Pilar Martin, M., Lee, J. W., Zarnitsyn, V., Choi, S. O., et al. (2010). Dissolving polymer microneedle patches for influenza vaccination. Nature Medicine, 16(8), 915.CrossRefGoogle Scholar
  8. 8.
    Kim, Y. C., Park, J. H., & Prausnitz, M. R. (2012). Microneedles for drug and vaccine delivery. Advanced Drug Delivery Reviews, 64(14), 1547–1568.CrossRefGoogle Scholar
  9. 9.
    El-Laboudi, A., Oliver, N. S., Cass, A., & Johnston, D. (2013). Use of microneedle array devices for continuous glucose monitoring: A review. Diabetes Technology & Therapeutics, 15(1), 101–115.CrossRefGoogle Scholar
  10. 10.
    Worgull, M., Hétu, J. F., Kabanemi, K. K., & Heckele, M. (2008). Hot embossing of microstructures: Characterization of friction during demolding. Microsystem Technologies, 14(6), 767–773.CrossRefGoogle Scholar
  11. 11.
    Kolew, A., Münch, D., Sikora, K., & Worgull, M. (2011). Hot embossing of micro and sub-micro structured inserts for polymer replication. Microsystem Technologies, 17(4), 609–618.CrossRefGoogle Scholar
  12. 12.
    Fan, Y., Li, T., Lau, W. M., & Yang, J. (2012). A rapid hot-embossing prototyping approach using SU-8 molds coated with metal and antistick coatings. Journal of Microelectromechanical Systems, 21(4), 875–881.CrossRefGoogle Scholar
  13. 13.
    Wu, D., Sun, J., Liu, Y., Yang, Z., Xu, H., Zheng, X., et al. (2017). Rapid fabrication of microstructure on PMMA substrate by the plate to plate Transition-Spanning isothermal hot embossing method nearby glass transition temperature. Polymer Engineering & Science, 57(3), 268–274.CrossRefGoogle Scholar
  14. 14.
    Wilson, C. J., & Beck, P. A. (1996). Fracture testing of bulk silicon microcantilever beams subjected to a side load. Journal of Microelectromechanical Systems, 5(3), 142–150.CrossRefGoogle Scholar
  15. 15.
    Bodhale, D. W., Nisar, A., & Afzulpurkar, N. (2010). Design, fabrication and analysis of silicon microneedles for transdermal drug delivery applications. In The third, international conference on the development of biomedical engineering in Vietnam (pp. 84–89). Berlin, Heidelberg: Springer.Google Scholar
  16. 16.
    Schuetz, Y. B., Naik, A., Guy, R. H., & Kalia, Y. N. (2005). Emerging strategies for the transdermal delivery of peptide and protein drugs. Expert Opinion on Drug Delivery, 2(3), 533–548.CrossRefGoogle Scholar
  17. 17.
    Bronaugh, R. L., & Maibach, H. L. (2005). Percutaneous absorption: Drugs, cosmetics, mechanisms, methods. Boca Raton: CRC Press.CrossRefGoogle Scholar
  18. 18.
    Kong, X. Q., Zhou, P., & Wu, C. W. (2011). Numerical simulation of microneedles’ insertion into skin. Computer Methods in Biomechanics and Biomedical Engineering, 14(9), 827–835.CrossRefGoogle Scholar
  19. 19.
    Davis, S. P., Landis, B. J., Adams, Z. H., Allen, M. G., & Prausnitz, M. R. (2004). Insertion of microneedles into skin: Measurement and prediction of insertion force and needle fracture force. Journal of Biomechanics, 37(8), 1155–1163.CrossRefGoogle Scholar
  20. 20.
    Davis, S. P., Landis, B. J., Adams, Z. H., Allen, M. G., & Prausnitz, M. R. (2004). Insertion of microneedles into skin: Measurement and prediction of insertion force and needle fracture force. Journal of Biomechanics, 37(8), 1155–1163.CrossRefGoogle Scholar
  21. 21.
    Berins, M. (Ed.). (1991). Plastics engineering handbook of the society of the plastics industry (5th ed.). Berlin: Springer.Google Scholar
  22. 22.
    Lu, C., Cheng, M. M. C., Benatar, A., & Lee, L. J. (2007). Embossing of high-aspect-ratio-microstructures using sacrificial templates and fast surface heating. Polymer Engineering & Science, 47(6), 830–840.CrossRefGoogle Scholar
  23. 23.
    Lewis, W. (2014). Is microneedling really the next big thing? Practice.Google Scholar
  24. 24.
    Esch, M. B., Kapur, S., Irizarry, G., & Genova, V. (2003). Influence of master fabrication techniques on the characteristics of embossed microfluidic channels. Lab on a Chip, 3(2), 121–127.CrossRefGoogle Scholar
  25. 25.
    Bodhale, D. W., Nisar, A., & Afzulpurkar, N. (2010). Structural and microfluidic analysis of hollow side-open polymeric microneedles for transdermal drug delivery applications. Microfluidics and Nanofluidics, 8(3), 373–392.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.College of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijingPeople’s Republic of China

Personalised recommendations