Numerical Simulation of Crystal Growth in Injection Molded Thermoplastics based on Monte Carlo Method with Shear Rate Tracking

  • Sun Kyoung KimEmail author
  • Areum Jeong
Regular Paper


Semi-crystalline thermoplastic polymer can have crystalline structure when it solidifies. The most commonly observed crystals in injection molded polymer are spherulites, which are usually observed throughout the thickness of the specimen. This work has aimed at building a numerical simulation model for nucleation and spherulite growth with shear rate tracking, which will enhance nuclei counting. A voxel method has been implemented for impingement while Hoffman-Laurent model is employed to calculate the growth rate. Filling flow and solidification process of injection molding have been numerically simulated to provide accurate shear rate and temperature to the spherulite growth simulation. The spherulitic development of an injection-molded polypropylene during the solidification have been simulated and quantitatively analyzed.


Injection molding Crystallization Simulation Shear rate 



This work was supported by a NRF Grant funded by the Korea Government (NRF-2014R1A2A1A11054451 and NRF-2018R1A5A1024127).


  1. 1.
    Sousa, R. A., Reis, R. L., Cunha, A. M., & Bevis, M. J. J. (2003). Structural development of HDPE in injection molding. Journal of Applied Polymer Science, 89, 2079–2087.CrossRefGoogle Scholar
  2. 2.
    Yamamoto, T. (2009). Computer modeling of polymer crystallization: Toward computer-assisted materials design. Polymer, 50, 1975–1985.CrossRefGoogle Scholar
  3. 3.
    Guo, X., Isayev, A. I., & Guo, L. (1999). Crystallinity and microstructure in injection moldings of isotactic polypropylenes. Part 1: A new approach to modeling and model parameters. Polymer Engineering and Science, 39, 2096–2114.CrossRefGoogle Scholar
  4. 4.
    Zinet, M., El Otmani, R., Boutaous, M., & Chantrenne, P. (2010). Numerical modeling of non-isothermal polymer crystallization kinetics: Flow and thermal effects. Polymer Engineering and Science, 50, 2044–2059.CrossRefGoogle Scholar
  5. 5.
    Grest, G. S., Anderson, M. P. & Srolovitz, D. J., Computer simulation of microstructural dynamics, No. LA-UR-86-420; CONF-8510273-2. Exxon Research and Engineering Co., Annandale, New Jersey, USA. Corporate Research Science Lab.; Los Alamos National Lab., New Maxico, USA, 1985.Google Scholar
  6. 6.
    Spina, R., Spekowius, D. J., & Hopmann, C. (2016). Multiphysics simulation of thermoplastic polymer crystallization. Material and Design, 95, 455–469.CrossRefGoogle Scholar
  7. 7.
    Hieber, C. A. (1987). Fundamentals in injection and compression molding. New York: Marcel Dekker.Google Scholar
  8. 8.
    Olsson, E., & Kreiss, G. (2005). A conservative level set method for two phase flow. Journal of Computational Physics, 210, 225–246.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Keller, A., & Kolnaar, H. W. H. (2016). Flow-induced orientation and structure formation, part II. Structure development during processing. Materials Science and Technology, 18, 189.Google Scholar
  10. 10.
    Norton, D. R., & Keller, A. (1985). The spherulitic and lamellar morphology of melt-crystallized isotactic polypropylene. Polymer, 26(5), 704–716.CrossRefGoogle Scholar
  11. 11.
    Hoffman, J. D., & Miller, R. L. (1997). Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer, 38(13), 3151–3212.CrossRefGoogle Scholar
  12. 12.
    Koscher, E., & Fulchiron, R. (2002). Influence of shear on polypropylene crystallization: Morphology development and kinetics. Polymer, 43(25), 6931–6942.CrossRefGoogle Scholar
  13. 13.
    Pospíšil, L., & Rybníkař, F. (1990). Crystallization of controlled rheology type polypropylene. Polymer, 31(3), 476–480.CrossRefGoogle Scholar
  14. 14.
    Kim, C. Y., Kim, Y. C., & Kim, S. C. (1993). Polymer. Engineering Sciences, 33, 1445–1451.Google Scholar
  15. 15.
    Kang, S. Y., Kim, S. K., & Lee, W. I. (2008). Penalty formulation for postfilling analysis during injection molding. International Journal for Numerical Methods in Fluids, 57(2), 139–155.CrossRefzbMATHGoogle Scholar
  16. 16.
    Zheng, R., & Kennedy, P. K. (2004). A model for post-flow induced crystallization: General equations and predictions. Journal of Rheology, 48, 823–842.CrossRefGoogle Scholar
  17. 17.
    Liu, Y., Geng, T., Turng, L. S., Wang, X., & Ren, Q. (2017). A multi-scale numerical simulation of the crystallisation and temperature field of glass. Molecular Physics, 115(23), 3024–3032.CrossRefGoogle Scholar
  18. 18.
    Liu, Y., Geng, T., Turng, L., Liu, C., Cao, W., & Shen, C. (2017). A fast and high accuracy numerical simulation algorithm of the polymer spherulite at the mesoscale level. Modelling and Simulation in Materials Science and Engineering, 25, 065006.CrossRefGoogle Scholar
  19. 19.
    De Santis, F., & Pantani, R. (2013). Nucleation density and growth rate of polypropylene measured by calorimetric experiments. Journal of Thermal Analysis and Calorimetry, 112, 1481–1488.CrossRefGoogle Scholar
  20. 20.
    Autodesk MoldFlow 2010 Insight. (2010). Autodesk Inc.Google Scholar
  21. 21.
    Zuidema, H., Peters, G., & Meijer, H. (2001). Development and validation of a recoverable strain-based model for flow-induced crystallization of polymers. Macromolecular Theory and Simulations, 10, 447–460.CrossRefGoogle Scholar
  22. 22.
    Custódio, F. J. M. F., Steenbakkers, R. J. A., Anderson, P. D., Peters, G. W. M., & Meijer, H. E. H. (2009). Model development and validation of crystallization behavior in injection molding prototype flows. Macromolecular Theory and Simulations, 18, 1022–1344.Google Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.Mechanical System and Design EngineeringSeoul National University of Science and TechnologySeoulKorea
  2. 2.School of Mechanical and Aerospace EngineeringSeoul National UniversitySeoulKorea
  3. 3.Mold Research CenterSeoul National University of Science and TechnologySeoulKorea

Personalised recommendations