Design and Test of the MEMS Coupled Piezoelectric–Electromagnetic Energy Harvester

  • Lian-min CaoEmail author
  • Zhi-xu Li
  • Cheng Guo
  • Peng-peng Li
  • Xiang-qiang Meng
  • Ting-ming Wang
Regular Paper


This paper researches on the design and test of the output performance of double-end clamped MEMS coupled piezoelectric–electromagnetic energy harvester. It establishes the theoretical output model of the double-end clamped rectangular beam and trapezoidal beam piezoelectric–electromagnetic energy harvester, and optimizes the structure parameters of piezoelectric and electromagnetic unit with simulation analysis. It also respectively realizes the processing of piezoelectric and electromagnetic unit by MEMS and flexible PCB technology, and completes the performance test of structure prototype through the experimental system. The result showed that the capacity of MEMS coupled piezoelectric–electromagnetic energy harvester, which taked four coil piezoelectric with integrated electromagnetic in series, was 12.23 times higher than that of piezoelectric energy harvester. Also the output voltage and power of coupled trapezoidal beam energy harvester were respectively increased 18.89% and 2.26%, compared with coupled rectangular beam energy harvester.


Coupled energy harvester Piezoelectric Electromagnetic MEMS Double-end clamped 

List of Symbols




Equivalent mass


Equivalent damping


Equivalent stiffness

k1, k3

Nonlinear stiffness introduced by large deformation


Coupling coefficient of piezoelectricity


Coupling coefficient of electromagnetism


Displacement function


Piezoelectric partial voltage function


Electromagnetic partial current function




Calibration factor of the energy harvester system model


Loading resistance of the piezoelectric part


Internal equivalent resistance


Loading resistance of the electromagnetic part


Equivalent capacitance of the piezoelectric part


Equivalent inductance of the electromagnetic part



This work supported by the Natural Science Foundation of Shandong Province, China (ZR201709220253).


  1. 1.
    Inman, D. J., & Karami, M. A. (2012). Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Applied Physics Letters, 100(4), 042901–042904.CrossRefGoogle Scholar
  2. 2.
    Ling, C. S., Hewitt, D., Burrow, S. G., Clare, L., Barton, D. A. W., Wells, D. M., et al. (2013). Technological challenges of developing wireless health and usage monitoring systems. Proceedings of SPIE, 8695(1), 86950.CrossRefGoogle Scholar
  3. 3.
    Nicholas, R., & Natarajan, B. (2013). A structured approach to optimization of energy harvesting. In Wireless sensor networks the 10th annual IEEE CCNC (pp. 420–425).Google Scholar
  4. 4.
    Tiwari, R., Buch, N., & Garcia, E. (2014). Energy balance for peak detection method in piezoelectric energy harvester. Journal of Intelligent Material Systems and Structures, 25(8), 1024–1035.CrossRefGoogle Scholar
  5. 5.
    Wacharasindhu, T., & Wkwon, J. (2008). A micromachined energy harvester from a keyboard using combined electromagnetic and piezoelectric conversion. Journal of Micromechanics and Microengineering, 18(10), 1–8.CrossRefGoogle Scholar
  6. 6.
    Yang, X., Wang, Y., & Cao, Y. (2014). A new hybrid piezoelectric–electromagnetic vibration-powered generator and its model and experiment research applied superconductivity. IEEE Transactions on Applied Superconductivity, 24(3), 1–4.CrossRefGoogle Scholar
  7. 7.
    Challa, V. R., Prasad, M. G., & Fisher, F. T. (2009). A coupled piezoelectric–electromagnetic energy harvesting technique for achieving increased power output through damping matching. Smart Materials and Structures, 18(9), 1–11.CrossRefGoogle Scholar
  8. 8.
    Robert, D., Wu, W. J., & Chen, Y. Y. (2008). A hybrid piezoelectric and electromagnetic energy harvesting device. In 19th International conference on AST.Google Scholar
  9. 9.
    Tadesse, Y., Zhang, S., & Priya, S. (2009). Multimodal energy harvesting system: Piezoelectric and electromagnetic. Journal of Intelligent Material Systems and Structures, 20(5), 625–632.CrossRefGoogle Scholar
  10. 10.
    Li, P., Gao, S., & Cai, H. (2014). Coupling effect analysis for hybrid piezoelectric and electromagnetic energy harvesting from random vibrations. International Journal of Precision Engineering and Manufacturing, 9(15), 1915–1924.CrossRefGoogle Scholar
  11. 11.
    Li, P., Gao, S., & Niu, S. (2014). An analysis of the coupling effect for a hybrid piezoelectric and electromagnetic energy harvester. Smart Materials and Structures, 23(6), 065016.CrossRefGoogle Scholar
  12. 12.
    Li, P., Gao, S., & Cai, H. (2016). Theoretical analysis and experimental study for nonlinear hybrid piezoelectric and electromagnetic energy harvester. Microsystem Technologies, 22(4), 727–739.CrossRefGoogle Scholar
  13. 13.
    Li, P., Gao, S., & Zhou, X. (2018). On the performances of a nonlinear hybrid piezoelectric and electromagnetic energy harvester. Microsystem Technologies, 24(2), 1017–1024.CrossRefGoogle Scholar
  14. 14.
    Marin, A., Turner, J., & Ha, D. S. (2013). Broadband electromagnetic vibration energy harvesting system for powering wireless sensor nodes. Smart Materials and Structures, 22(7), 075008.CrossRefGoogle Scholar
  15. 15.
    Khan, S. F. U. (2011). Vibration-based electromagnetic energy harvesters for MEMS application. Vancouver, CA: The University of British Columbia.Google Scholar
  16. 16.
    Yang, B., Lee, C., & Kee, W. L. (2010). Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms. Journal of Micro/Nanolithography, MEMS, and MOEMS, 9(2), 1–10.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  • Lian-min Cao
    • 1
    Email author
  • Zhi-xu Li
    • 1
  • Cheng Guo
    • 1
  • Peng-peng Li
    • 1
  • Xiang-qiang Meng
    • 1
  • Ting-ming Wang
    • 1
  1. 1.College of Mechanical and Electronic EngineeringShandong University of Science and TechnologyQingdaoChina

Personalised recommendations