Advertisement

Temporal and Spatial Coherent Pulse Combining by Multi-path Interferometric Scheme

  • Jin Jang
  • Hee Won Jeong
  • Ki-Nam JooEmail author
Regular Paper
  • 9 Downloads

Abstract

In this investigation, we propose a compact temporal and spatial coherent pulse combining module to be applied to the divided chirped pulse amplification. Our temporal coherent pulse dividing/combining module has effectively long optical time delay line, which leads to a few ns delay time, because of the multi-path interferometric scheme and the single module can act a role of both dividing and combining pulses. For the coherent pulse combining, the locking of optical coherence by single-detector electronic-frequency tagging technique was adopted and the sub-pulses were successfully combined to achieve the single combined pulse. In order to estimate the power stability, the intensity signals were collected for approximately 13 h and Allan deviation was calculated. As the result, the stability of pulse combining was 2.97 × 10−2 (2.97%) at 1 s integration time.

Keywords

Coherent pulse combining Temporal pulse combining Spatial pulse combing Optical system design 

List of Symbols

L

Optical path length

ΔL

Length of optical delay line

Notes

Acknowledgements

This study was supported by research fund from Chosun University, 2018.

References

  1. 1.
    Udem, T., Holzwarth, R., & Hänsch, T. W. (2002). Optical frequency metrology. Nature, 416, 233–237.CrossRefGoogle Scholar
  2. 2.
    Joo, W.-D., Park, J., Kim, S., Kim, S., Kim, Y., Kim, S.-W., et al. (2013). Phase shifting interferometry for large-sized surface measurements by sweeping the repetition rate of femtosecond light pulses. International Journal of Precision Engineering and Manufacturing-Green Technology, 14, 241–246.CrossRefGoogle Scholar
  3. 3.
    Jang, Y.-S., & Kim, S.-W. (2017). Compensation of the refractive index of air in laser interferometer for distance measurement: a review. International Journal of Precision Engineering and Manufacturing-Green Technology, 18, 1881–1890.CrossRefGoogle Scholar
  4. 4.
    Jang, Y.-S., Kim, W., Jang, H., & Kim, S.-W. (2018). Absolute distance meter operating on a free-running mode-locked laser for space mission. International Journal of Precision Engineering and Manufacturing-Green Technology, 19, 975–981.CrossRefGoogle Scholar
  5. 5.
    Sibbett, W., Lagatsky, A. A., & Brown, C. T. A. (2012). The development and application of femtosecond laser systems. Optics Express, 20, 6989–7001.CrossRefGoogle Scholar
  6. 6.
    Gattass, R. R., & Mazur, E. (2008). Femtosecond laser micromachining in transparent materials. Nature Photonics, 2, 219–225.CrossRefGoogle Scholar
  7. 7.
    Sundaram, S. K., & Mazur, E. (2002). Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nature Materials, 1, 217–224.CrossRefGoogle Scholar
  8. 8.
    Bartels, R. A., Paul, A., Green, H., Kapteyn, H. C., Murnane, M. M., Backus, S., et al. (2002). Generation of spatially coherent light at extreme ultraviolet wavelengths. Science, 297, 376–378.CrossRefGoogle Scholar
  9. 9.
    Ditmire, T., Zweiback, J., Yanovsky, V. P., Cowan, T. E., Hays, G., & Wharton, K. B. (1999). Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters. Nature, 398, 489–492.CrossRefGoogle Scholar
  10. 10.
    Röser, F., Eidam, T., Rothhardt, J., Schmidt, O., Schimpf, D. N., Limpert, J., et al. (2007). Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system. Optics Letters, 32, 3495–3497.CrossRefGoogle Scholar
  11. 11.
    Kienel, M., Müller, M., Klenke, A., Eidam, T., Limpert, J., & Tünnermann, A. (2015). Multidimensional coherent pulse addition of ultrashort laser pulses. Optics Letters, 40, 522–525.CrossRefGoogle Scholar
  12. 12.
    Zhou, S., Wise, F. W., & Ouzounov, D. G. (2007). Divided-pulse amplification of ultrashort pulses. Optics Letters, 32, 871–873.CrossRefGoogle Scholar
  13. 13.
    Zaouter, Y., Guichard, F., Daniault, L., Hanna, M., Morin, F., Hönninger, C., et al. (2013). Femtosecond fiber chirped- and divided-pulse amplification system. Optics Letters, 38, 106–108.CrossRefGoogle Scholar
  14. 14.
    Palese, S., Cheung, E., Goodno, G., Shih, C.-C., Teodoro, F. D., McComb, T., et al. (2012). Coherent combining of pulsed fiber amplifiers in the nonlinear chirp regime with intra-pulse phase control. Optics Express, 20, 7422–7435.CrossRefGoogle Scholar
  15. 15.
    Shay, T. M. (2006). Theory of electronically phased coherent beam combination without a reference beam. Optics Express, 14, 12188–12195.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.Department of Photonic EngineeringChosun UniversityGwangjuSouth Korea

Personalised recommendations