Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Mechanical, Thermophysical, and Ultrasonic Properties of Thermoelectric HfX2 (X = S, Se) Compounds

  • 27 Accesses

Abstract

In the present study, ultrasonic and thermophysical behaviour of thermoelectric hexagonal structured HfX2 (X = S, Se) compounds have been analysed by the theoretical evaluation of second and third order elastic constants (SOECs and TOECs) using many body interaction potential model. The computed SOECs have been used to determine the temperature dependent specific heat, thermal energy density, elastic coupling constants, Grüneisen parameters, ultrasonic velocities, Debye average velocity, ultrasonic attenuation, and thermal relaxation time. We have observed that the temperature dependent ultrasonic attenuation and thermal relaxation time for HfX2 are mainly affected by thermal conductivity. The elastic properties of the material are compared with existing data in literature for the validation of the work. The obtained values of elastic stiffness are found very large in comparison to that of other material from transition metal dichalcogenides of group IVB indicating better mechanical properties than the same group materials. Calculated elastic, thermal, and ultrasonic properties are correlated for better characterization of the materials which are useful for thermoelectric and energy transport applications.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    S.K. Verma, D.K. Pandey, R.R. Yadav, Size dependent ultrasonic properties of InN nanowires. Phys. B 407, 3731–3735 (2012). https://doi.org/10.1016/j.physb.2012.05.052

  2. 2.

    D.K. Pandey, R.R. Yadav, Temperature dependent ultrasonic properties of aluminium nitride. Appl. Acoust. 70, 412–415 (2009). https://doi.org/10.1016/j.apacoust.2008.05.011

  3. 3.

    S.K. Verma, R.R. Yadav, A.K. Yadav, B. Joshi, Non-destructive evaluations of gallium nitride nanowires. Mater. Lett. 64, 1677–1680 (2010). https://doi.org/10.1016/j.matlet.2010.04.063

  4. 4.

    S.K. Kor, R.R. Yadav, Kailash: Ultrasonic attenuation in dielectric crystals. J. Phys. Soc. Jpn. 55, 207–212 (1986). https://doi.org/10.1143/JPSJ.55.207

  5. 5.

    R.R. Yadav, D. Singh, Behaviour of ultrasonic attenuation in intermetallics. Intermetallics 9, 189–194 (2001). https://doi.org/10.1016/S0966-9795(00)00089-3

  6. 6.

    W.P. Mason, T.B. Bateman, Relation between third-order elastic moduli and the thermal attenuation of ultrasonic waves in nonconducting and metallic crystals. J. Acoust. Soc. Am. 40, 852–862 (1966). https://doi.org/10.1121/1.1910158

  7. 7.

    K. Brugger, T.C. Fritz, Grüneisen gamma from elastic data. Phys. Rev. 157, 524–532 (1967). https://doi.org/10.1103/PhysRev.157.524

  8. 8.

    R. Wang, S. Wang, X. Wu, X. Liang, First-principles calculations on third-order elastic constants and internal relaxation for monolayer graphene. Phys. B 405, 3501–3506 (2010). https://doi.org/10.1016/j.physb.2010.05.032

  9. 9.

    M. Nandanpawar, S. Rajagopalan, Grüneisen numbers in hexagonal crystals. J. Acoust. Soc. Am. 71, 1469–1472 (1982). https://doi.org/10.1121/1.387844

  10. 10.

    G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S.K. Banerjee, L. Colombo, Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014). https://doi.org/10.1038/NNANO.2014.207

  11. 11.

    M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials. Chem. Rev. 113, 3766–3798 (2013). https://doi.org/10.1021/cr300263a

  12. 12.

    M. Traving, T. Seydel, L. Kipp, M. Skibowski, Combined photoemission and inverse photoemission study of HfS2 Phys. Rev. B. 63, 035107 (2001). https://doi.org/10.1103/PhysRevB.63.035107

  13. 13.

    G. Ding, G.Y. Gao, Z. Huang, W. Zhang, K. Yao, Thermoelectric properties of monolayer MSe2 (M=Zr, Hf): low lattice thermal conductivity and a promising figure of merit. Nanotechnology 27, 375703 (1–7) (2016). https://doi.org/10.1088/0957-4484/27/37/375703

  14. 14.

    G. Ding, C. Wang, G. Gao, K. Yao, C. Dun, C. Feng, D. Li, G. Zhang, Engineer the charge carrier via two-dimensional hetero structure to enhance the thermoelectric figure of merit. Nanoscale 10, 7077–7084 (2018). https://doi.org/10.1039/C7NR09029C

  15. 15.

    M. Salavati, Electronic and mechanical responses of two-dimensional HfS2, HfSe2, ZrS2, and ZrSe2 from first-principles. Front. Struct. Civil Eng. (2018). https://doi.org/10.1007/s11709-018-0491-5

  16. 16.

    S.U. Rehman, Z. Ding, Enhanced electronic and optical properties of three TMD heterobilayers. Phys. Chem. Chem. Phys. 20, 16604–16614 (2018). https://doi.org/10.1039/C8CP02995D

  17. 17.

    M.J. Mleczko, C. Zhang, H.R. Lee, H.H. Kuo, B.M. Köpe, R.G. Moore, Z.X. Shen, I.R. Fisher, Y. Nishi, E. Pop, HfSe2 and ZrSe2: Two-dimensional semiconductors withnative high-k oxides. Sci. Adv. 3, 1–9 (2017)

  18. 18.

    Q. Zhao, Y. Guo, K. Si, Z. Ren, J. Bai, X. Xu, Elastic, electronic, and dielectric properties of bulk and monolayer ZrS2, ZrSe2, HfS2, HfSe2 from van der Waals density- functional theory. Phys. Status Solidi B 254, 1700033 (1–11) (2017). https://doi.org/10.1002/pssb.201700033

  19. 19.

    D. Qin, P. Yan, G. Ding, X. Ge, H. Song, G. Gao, Monolayer PdSe2: a promising two-dimensional thermoelectric material. Sci. Rep. 8, 2764 (2018)

  20. 20.

    J. Kang, H. Sahin, F.M. Peeters, Mechanical properties of monolayer sulphides: a comparative study between MoS2, HfS2 and TiS3. Phys. Chem. Chem. Phys. 17, 27742–27749 (2015)

  21. 21.

    P.K. Dhawan, M. Wan, S.K. Verma, D.K. Pandey, R.R. Yadav, Effect of diameter and surface roughness on ultrasonic properties of GaAs nanowires. J. Appl. Phys. 117, 074307(1–6) (2015)

  22. 22.

    H. Jiang, Structural and electronic properties of ZrX2 and HfX2 (X = S and Se) from first principles calculations. J. Chem. Phys. 134, 204705 (2011). https://doi.org/10.1063/1.3594205

  23. 23.

    H. Guo, N. Lu, L. Wang, X. Wu, X.C. Zeng, Electronic and magnetic properties. J. Phys. Chem. C 118, 7242–7249 (2014). https://doi.org/10.1021/jp501734s

  24. 24.

    A.H. Reshak, S. Auluck, Theoretical investigation of the electronic and optical properties of ZrX2 (X = S, Se and Te). Phys. B 353, 230–237 (2004). https://doi.org/10.1016/j.physb.2004.10.001

  25. 25.

    K. Brugger, Thermodynamic definition of higher order elastic coefficients. Phys. Rev. A 133, 1611–1612 (1964). https://doi.org/10.1103/PhysRev.133.A1611

  26. 26.

    M. Born, J.E. Mayer, Zur Gittertheorie der Ionenkristalle. J. E. Z. Phys. 75, 1–18 (1932). https://doi.org/10.1007/BF01340511

  27. 27.

    D.K. Pandey, D. Singh, R.R. Yadav, Ultrasonic wave propagation in third group nitrides. Appl. Acoust. 68, 766–777 (2007). https://doi.org/10.1016/j.apacoust.2006.04.004

  28. 28.

    S. Mori, Y. Hiki, Calculation of the third and fourth-order elastic constants of alkali halide crystals. J. Phys. Soc. Jpn. 45, 1449–1456 (1978). https://doi.org/10.1143/JPSJ.45.1449

  29. 29.

    P.B. Ghate, Third-order elastic constants of alkali halide crystals. Phys. Rev. A 139, 1666–1674 (1965). https://doi.org/10.1103/PhysRev.139.A1666

  30. 30.

    A.K. Jaiswal, P.K. Yadawa, R.R. Yadav, Ultrasonic wave propagation in ternary intermetallic CeCuGe compound. Ultrasonics 89, 22–25 (2018). https://doi.org/10.1016/j.ultras.2018.04.009

  31. 31.

    P.K. Yadawa, Elastic and acoustic properties of XB2 (X= V, Nb & Ta) transition metal diborides. J. Mater. Phys. Chem. 3, 1–5 (2015). https://doi.org/10.12691/jmpc-3-1-1

  32. 32.

    D.K. Pandey, P.K. Yadawa, R.R. Yadav, Ultrasonic properties of hexagonal ZnS at nanoscale. Mater. Lett. 61, 5194–5198 (2007). https://doi.org/10.1016/j.matlet.2007.04.028

  33. 33.

    S.K. Verma, G. Mishra, D.K. Pandey, R.R. Yadav, Non-linear elastic properties of single-walled carbon nanotubes. Adv. Mater. Lett. 3, 34–3 (2012). https://doi.org/10.5185/amlett.2011.4251

  34. 34.

    A.K. Yadav, R.R. Yadav, D.K. Pandey, D. Singh, Ultrasonic study of fission products precipitated in the nuclear fuel. Mater. Lett. 62, 3258–3261 (2008). https://doi.org/10.1016/j.matlet.2008.02.036

  35. 35.

    J. Philip, M.A. Breazeale, Third-order elastic constants and Grüneisen parameters of silicon and germanium between 3 and 300 °K. J. Appl. Phys. 54, 752–757 (1983). https://doi.org/10.1063/1.332033

  36. 36.

    C.P. Yadav, D.K. Pandey, D. Singh, Ultrasonic study of Laves phase compounds ScOs2 and YOs2. Indian J. Phys. 93, 1147–1153 (2019). https://doi.org/10.1007/s12648-019-01389-8

  37. 37.

    D.E. Gray, AIP Handbook, 3rd edn. (McGraw Hill Co., Inc., New York, 1956), pp. 4–44, 4–57

Download references

Acknowledgements

The author (S. P. Singh) is grateful for the financial support provided by the University Grant Commission, New Delhi, India.

Author information

Correspondence to Shakti Pratap Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, S.P., Singh, G., Verma, A.K. et al. Mechanical, Thermophysical, and Ultrasonic Properties of Thermoelectric HfX2 (X = S, Se) Compounds. Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00633-9

Download citation

Keywords

  • Elastic constant
  • Phonon–phonon interaction
  • Thermal relaxation time
  • Ultrasonic attenuation
  • Ultrasonic velocity