Advertisement

Characterization of Ti–Al Intermetallic Synthesized by Mechanical Alloying Process

  • Manoj Kumar YadavEmail author
  • Arshad Noor Siddiquee
  • Zahid A. Khan
Article
  • 6 Downloads

Abstract

Mechanical alloying (MA) of Al60Ti40 (wt%) has been successfully done by using a planetary ball mill having mixed balls of 5 mm and 15 mm diameter to refine the crystallite size of the elemental powder and to get the new MAed phase of AlTi. The microstructural and morphological analysis of elemental as well as the processed powder was done with help of Scanning Electron Microscope and X-Ray diffraction technique. Mechanical alloying of elemental Al and Ti resulted in the formation of AlTi phases with the reflection of α-Ti3Al and TiAl3. The average particle size was reduced around 7 times after 60 h of milling. The mean crystallite size of MAed powder was also reduced up to 85 nm after 60 h of mechanical alloying under controlled conditions.

Graphic Abstract

Keywords

Aluminium Ball milling BPR Mechanical alloying Titanium Titanium aluminide 

Notes

References

  1. 1.
    C. Cui, B.M. Hu, L. Zhao, S. Liu, Titanium alloy production technology, market prospects and industry development. Mater. Des. 32(3), 1684–1691 (2011)CrossRefGoogle Scholar
  2. 2.
    F. Yang, S. Raynova, A. Singh, Q. Zhao, C. Romero, L. Bolzoni, Producing high-quality titanium alloy by a cost-effective route combining fast heating and hot processing. JOM 70(5), 1–6 (2018)CrossRefGoogle Scholar
  3. 3.
    R.M. German, Progress in titanium metal powder injection molding. Materials (Basel) 6(8), 3641–3662 (2013)CrossRefGoogle Scholar
  4. 4.
    W.J. Zhang, B.V. Reddy, S.C. Deevi, Physical properties of TiAl-base alloys. Scr. Mater. 45(6), 645–651 (2001)CrossRefGoogle Scholar
  5. 5.
    M.A. Atwater, L.N. Guevara, S.J. Knauss, Multifunctional porous catalyst produced by mechanical alloying. Mater. Res. Lett. 7(4), 131–136 (2019)CrossRefGoogle Scholar
  6. 6.
    H.J. Rack, J.I. Qazi, Titanium alloys for biomedical applications. Mater. Sci. Eng. C 26(8), 1269–1277 (2006)CrossRefGoogle Scholar
  7. 7.
    S.-C. Ur, I.-H. Kim, Thermoelectric properties of mechanically alloyed iron disilicides consolidated by various processes. Met. Mater. Int. 11(4), 301–308 (2005)CrossRefGoogle Scholar
  8. 8.
    C.-H. Lee, Y.-S. Kwon, Effect of mechanical alloying on the formation of Sm2Fe17Nx compound. Met. Mater. Int. 8(2), 151–154 (2002)CrossRefGoogle Scholar
  9. 9.
    M.K. Yadav, Fabrication of promising material ‘titanium aluminide’: methods and issues (a status report). Mater. Res. Express 5(11), 1–17 (2018)CrossRefGoogle Scholar
  10. 10.
    D.C. Jia, X.L. Li, Y. Zhou, H.Q. Han, Effect of SiC particulate sizes on the mechanical properties of Al-6Ti-6Nb matrix composites prepared by a mechanical alloying technique. J. Mater. Sci. Lett. 18(24), 2029–2032 (1999)CrossRefGoogle Scholar
  11. 11.
    Q. Yao, J. Sun, Y. Zhu, H. Zhang, W. Tong, TiO2 coating prepared by mechanical alloying treatment for photocatalytic degradation. Surf. Eng. 35(11), 927–932 (2019).  https://doi.org/10.1080/02670844.2018.1554738 CrossRefGoogle Scholar
  12. 12.
    C. Suryanarayana, E. Ivanov, V.V. Boldyrev, The science and technology of mechanical alloying. Mater. Sci. Eng. A 304–306(1–2), 151–158 (2001)CrossRefGoogle Scholar
  13. 13.
    C. Suryanarayana, N. Al-Aqeeli, Mechanically alloyed nanocomposites. Prog. Mater. Sci. 58(FEBRUARY), 338–502 (2013)Google Scholar
  14. 14.
    Y. Liu, W. Liu, Mechanical alloying and spark plasma sintering of the intermetallic compound Ti50Al50. J. Alloys Compd. 440(1–2), 154–157 (2007)CrossRefGoogle Scholar
  15. 15.
    J.S. Benjamin, Mechanical alloying—a perspective. Met. Powder Rep. 45(2), 122–127 (1990)CrossRefGoogle Scholar
  16. 16.
    R.B. Schwarz, S. Srinivasan, P.B. Desch, Synthesis of metastable aluminum-based intermetallics by mechanical alloying. Mater. Sci. Forum 88–90, 595–602 (1992)CrossRefGoogle Scholar
  17. 17.
    S. Çam, V. Demir, D. Özyürek, Wear behaviour of A356/TiAl3 in situ composites produced by mechanical alloying. Metals (Basel) 6(2), 34 (2016)CrossRefGoogle Scholar
  18. 18.
    N.G. Razumov, A.A. Popovich, Q. Wang, Thermal plasma spheroidization of high-nitrogen stainless steel powder alloys synthesized by mechanical alloying. Met. Mater. Int. 24(2), 363–370 (2018)CrossRefGoogle Scholar
  19. 19.
    J.M. Byun, C.W. Park, Y. Do Kim, Experimental verification of the decomposition of Y2O3 in Fe-based ODS alloys during mechanical alloying process. Met. Mater. Int. 24(6), 1309–1314 (2018)CrossRefGoogle Scholar
  20. 20.
    M. Zadra, Mechanical alloying of titanium. Mater. Sci. Eng. A 583, 105–113 (2013)CrossRefGoogle Scholar
  21. 21.
    L. Dias, B. Trindade, C. Coelho, S. Patankar, C. Draney, F.H. Sam Froes, Ti-Mg-Si alloys produced by non-equilibrium processing methods: mechanical alloying and sputtering. Mater. Sci. Eng. A 364(1–2), 273–280 (2004)CrossRefGoogle Scholar
  22. 22.
    M. Wang, H.N. Han, H.-S. Chung, Y.-B. Chun, J. Jang, Microstructural evolution of oxide and nitride dispersed nickel-based alloy powders. Met. Mater. Int. 25(1), 140–146 (2019)CrossRefGoogle Scholar
  23. 23.
    H.S. Jang, C.J. Van Tyne, W.H. Lee, Rapid consolidation mechanism of titanium aluminide solid compact via electric discharging through elemental Ti and Al powder mixture. Met. Mater. Int. 25(4), 991–999 (2019)CrossRefGoogle Scholar
  24. 24.
    Z.Y. Ma, S.R. Sharma, R.S. Mishra, Effect of friction stir processing on the microstructure of cast A356 aluminum. Mater. Sci. Eng. A 433(1–2), 269–278 (2006)CrossRefGoogle Scholar
  25. 25.
    S. Seshan, J. Kaneko, Advanced materials through mechanical alloying-a retrospective review. Adv. Compos. Mater 2(2), 153–170 (1992)CrossRefGoogle Scholar
  26. 26.
    S. Alamolhoda, S. Heshmati-Manesh, A. Ataie, A. Badiei, Role of process control agents on milling behavior of Al and TiO2 powder mixture to synthesize TiAl/Al2O3 nano composite. Int. J. Mod. Phys. Conf. Ser. 05(01), 638–645 (2012)CrossRefGoogle Scholar
  27. 27.
    M. Abd Elhamid, M.M. Emara, H.G. Salem, Influence of mixing technique on the mechanical properties and structural evolution of Al-NiAl Composites. J. Mater. Eng. Perform. 23(10), 3425–3435 (2014)CrossRefGoogle Scholar
  28. 28.
    M. Zadra, Facile mechanical alloying of titanium sponge. Mater. Sci. Eng. A 590, 281–288 (2014)CrossRefGoogle Scholar
  29. 29.
    E. Baril, L.-P. Lefebvre, Y. Thomas, Interstitial elements in titanium powder metallurgy: sources and control. Powder Metall. 54(3), 183–186 (2011)CrossRefGoogle Scholar
  30. 30.
    B.S. Murty, S. Ranganathan, Novel materials synthesis by mechanical alloying/milling. Int. Mater. Rev. 43(3), 101–141 (1998)CrossRefGoogle Scholar
  31. 31.
    M.H. Enayati, F.A. Mohamed, Application of mechanical alloying/milling for synthesis of nanocrystalline and amorphous materials. Int. Mater. Rev. 59(7), 394–416 (2014)CrossRefGoogle Scholar
  32. 32.
    S.R.B.S. Murty, Novel materials synthesis by mechanical alloying/milling. Int. Mater. 43(3), 101–141 (1998)CrossRefGoogle Scholar
  33. 33.
    S.N.A. Muttalib, N. Othman, Effect of ball milling parameters on properties of attapulgite filled natural rubber composite. Proc. Chem. 19, 381–387 (2016)CrossRefGoogle Scholar
  34. 34.
    H. Ghayour, M. Abdellahi, M. Bahmanpour, Optimization of the high energy ball-milling: modeling and parametric study. Powder Technol. 291, 7–13 (2016)CrossRefGoogle Scholar
  35. 35.
    F.G. Cuevas, J. Cintas, J.M. Montes, J.M. Gallardo, Al-Ti powder produced through mechanical alloying for different times. J. Mater. Sci. 41(24), 8339–8346 (2006)CrossRefGoogle Scholar
  36. 36.
    E. Basiri Tochaee, H.R. Madaah Hosseini, S.M. Seyed Reihani, On the fracture toughness behavior of in situ Al-Ti composites produced via mechanical alloying and hot extrusion. J. Alloys Compd. 681, 12–21 (2016)CrossRefGoogle Scholar
  37. 37.
    J. Benjamin, Mechanical alloying. Sci. Am. 234, 40–48 (1976)CrossRefGoogle Scholar
  38. 38.
    Z. Gao, H. Luo, Q. Li, Y. Wan, Preparation and characterization of Ti-10Mo alloy by mechanical alloying. Metallogr. Microstruct. Anal. 1(6), 282–289 (2012)CrossRefGoogle Scholar
  39. 39.
    A. Chabok, K. Dehghani, Effect of processing parameters on the mechanical properties of interstitial free steel subjected to friction stir processing. J. Mater. Eng. Perform. 22(5), 1324–1330 (2013)CrossRefGoogle Scholar
  40. 40.
    A. Borah, P.S. Robi, A. Srinivasan, Synthesis of nano-crystalline RuAl by mechanical alloying. Met. Mater. Int. 13(4), 293–302 (2007)CrossRefGoogle Scholar
  41. 41.
    C. Suryanarayana, Mechanical alloying and milling. Prog. Mater Sci. 46(1–2), 1–184 (2001)CrossRefGoogle Scholar
  42. 42.
    A. Bernatiková, P. Novák, F. Průša, Preparation of Ti-Al and Fe-Al alloys by mechanical alloying. Acta Phys. Pol. A 134(3), 733–737 (2018)CrossRefGoogle Scholar
  43. 43.
    J.S. Benjamin, Fundamentals of mechanical alloying. Mater. Sci. Forum 88–90, 1–18 (1992)CrossRefGoogle Scholar
  44. 44.
    L. Lu, M.O. Lai, C.W. Ng, Enhanced mechanical properties of an Al based metal matrix composite prepared using mechanical alloying. Mater. Sci. Eng. A 252, 203–211 (1998)CrossRefGoogle Scholar
  45. 45.
    T.T. Bui, X.Q. Le, D.P. To, V.T. Nguyen, Investigation of typical properties of nanocrystalline iron powders prepared by ball milling techniques. Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 045003 (2013)CrossRefGoogle Scholar
  46. 46.
    F.G. Cuevas, J.M. Montes, J. Cintas, J.M. Gallardo, Production of Al–Al3Ti powders by mechanical alloying and annealing. Powder Metall. 48(4), 365–370 (2013)CrossRefGoogle Scholar
  47. 47.
    J.B. Al-dabbagh, R.M. Tahar, M. Ishak, S. Aisyah, Structural and phase formation of TiAl alloys synthesized by mechanical alloying and heat treatment. Int. J. Nanoelectron. Mater. 8, 23–32 (2015)Google Scholar
  48. 48.
    C. Suryanarayana, G.-H. Chen, A. Frefer, F.H. Froes, Structural evolution of mechanically alloyed Ti-Al alloys. Mater. Sci. Eng. A 158(1), 93–101 (1992)CrossRefGoogle Scholar
  49. 49.
    F. Chai, D. Zhang, Y. Li, Effect of thermal history on microstructures and mechanical properties of AZ31 magnesium alloy prepared by friction stir processing. Materials (Basel) 7(3), 1573–1589 (2014)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2020

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringJamia Millia IslamiaNew DelhiIndia

Personalised recommendations