Advertisement

Retardation of Grain Growth in Al 3003 Nanocomposite Weldment Using ARB Filler Metal

  • 45 Accesses

Abstract

This research demonstrates the feasibility of filler rod fabrication to develop nanocomposite weldment to enhance the joint strength via ARB technique. Al 3003 alloys were joined through GTAW by melting fabricated nanocomposite filler metal. TiO2 nanoparticles were chosen as reinforcement from 0 to 3 wt%. Roll bonding is desired owing to the proper distribution of TiO2 particles. SEM depicted the distribution of reinforcement particles in the grain boundaries. TEM disclosed the uniformity in particulates distribution, peening of dislocation and strain fields in 12 wt% TiO2 reinforced nanocomposite weldment. EBSD portrayed the grain refinement occurred in the weld zone due to reinforcement addition. The improvement in impact and bending strength were due to excellent bonding between the Al and reinforcement particles and excellent load transfer ability provided by reinforcement particles.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Abbreviations

Al:

Aluminium

ARB:

Accumulative roll bonding

BS:

Bending strength

CNTs:

Carbon nanotubes

CTE:

Coefficient of thermal expansion

EBSD:

Electron back scattered diffraction image

GNSs:

Graphene nanosheets

GS:

Grain size

GTAW:

Gas tungsten arc welding

H:

Hardness

IS:

Impact strength

l × b × t:

Length × breadth × thickness

MMCs:

Metal matrix composites

SAD:

Selective area diffraction

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

TiO2 :

Titanium dioxide

UTS:

Ultimate tensile strength

XRD:

X ray diffraction

References

  1. 1.

    K.R. Ramkumar, S. Natarajan, Materials Science & Engineering A Investigations on microstructure and mechanical properties of TiO2 Nanoparticles addition in Al 3003 alloy joints by gas tungsten arc welding. Mater. Sci. Eng. A 727, 51–60 (2018)

  2. 2.

    K.R. Ramkumar, S. Sivasankaran, A.S. Alaboodi, Effect of alumina content on microstructures, mechanical, wear and machining behavior of Cu-10Zn nanocomposite prepared by mechanical alloying and hot-pressing. J. Alloys Compd. 709, 129–141 (2017)

  3. 3.

    K. JohnJoshua, S.J. Vijay, D. Philip Selvaraj, Effect of nano TiO2 particles on microhardness and microstructural behavior of AA7068 metal matrix composites. Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2018.08.077

  4. 4.

    A. Sabetghadam-Isfahani, M. Abbasi, S.M.H. Sharifi, M. Fattahi, S. Amirkhanlou, Y. Fattahi, Microstructure and mechanical properties of carbon nanotubes/AZ31 magnesium composite gas tungsten arc welding filler rods fabricated by powder metallurgy. Diam. Relat. Mater. 69, 160–165 (2016). https://doi.org/10.1016/j.diamond.2016.08.017

  5. 5.

    A. Sabetghadam-Isfahani, H. Zalaghi, S. Hashempour, M. Fattahi, S. Amirkhanlou, Y. Fattahi, Fabrication and properties of ZrO2/AZ31 nanocomposite fillers of gas tungsten arc welding by accumulative roll bonding. Arch. Civ. Mech. Eng. 16, 397–402 (2016). https://doi.org/10.1016/j.acme.2016.02.005

  6. 6.

    Z. Xing, S. Kang, H. Kim, Structure and properties of AA 3003 alloy produced by accumulative roll bonding process. J. Mater. Sci. 37, 717–722 (2002)

  7. 7.

    A.R. Dabiri, R. Yousefi Mojallal, E. Ahmadi, M. Fattahi, S. Amirkhanlou, Y. Fattahi, Effect of ZrO2 nanoparticles on the impact properties of shielded metal arc welds. Mater. Lett. 158, 325–328 (2015). https://doi.org/10.1016/j.matlet.2015.05.159

  8. 8.

    C.W. Schmidt, C. Knieke, V. Maier, H.W. Höppel, W. Peukert, M. Göken, Accelerated grain refinement during accumulative roll bonding by nanoparticle reinforcement. Scr. Mater. 64, 245–248 (2011). https://doi.org/10.1016/j.scriptamat.2010.10.013

  9. 9.

    M. Fattahi, A.R. Gholami, A. Eynalvandpour, E. Ahmadi, Y. Fattahi, S. Akhavan, Improved microstructure and mechanical properties in gas tungsten arc welded aluminum joints by using graphene nanosheets/aluminum composite filler wires. Micron. 64, 20–27 (2014). https://doi.org/10.1016/j.micron.2014.03.013

  10. 10.

    N. Muralidharan, K. Chockalingam, I. Dinaharan, K. Kalaiselvan, Microstructure and mechanical behavior of AA2024 aluminum matrix composites reinforced with in situ synthesized ZrB2 particles. J. Alloys Compd. 735, 2167–2174 (2018). https://doi.org/10.1016/j.jallcom.2017.11.371

  11. 11.

    J. David Raja Selvam, I. Dinaharan, S. Vibin Philip, P.M. Mashinini, Microstructure and mechanical characterization of in situ synthesized AA6061/(TiB2 + Al2O3) hybrid aluminum matrix composites. J. Alloys Compd. 740, 529–535 (2018). https://doi.org/10.1016/j.jallcom.2018.01.016

  12. 12.

    M. Fattahi, M. Mohammady, N. Sajjadi, M. Honarmand, Y. Fattahi, S. Akhavan, Effect of TiC nanoparticles on the microstructure and mechanical properties of gas tungsten arc welded aluminum joints. J. Mater. Process. Technol. 217, 21–29 (2015). https://doi.org/10.1016/J.JMATPROTEC.2014.10.023

  13. 13.

    K.R. Ramkumar, S. Ilangovan, S. Sivasankaran, A.S. Alaboodi, Experimental investigation on synthesis and structural characterization of Cu-Zn-x wt%Al2O3 (x = 0, 3, 6, 9 & 12%) nanocomposites powders through mechanical alloying. J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.07.026

  14. 14.

    K.R. Ramkumar, S. Natarajan, Tensile properties and strengthening effects of Al 3003 alloy weldment reinforced with TiO2 nanoparticles. Compos. B 175, 107159 (2019)

  15. 15.

    K.R. Ramkumar, H. Bekele, S. Sivasankaran, Experimental investigation on mechanical and turning behavior of al 7075/x % wt. TiB2-1% Gr in situ hybrid composite. Adv. Mater. Sci. Eng. (2015). https://doi.org/10.1155/2015/727141

  16. 16.

    M. Alizadeh, M.H. Paydar, S. Amirkhanlou, R. Jamaati, B. Niroumand, M.R. Toroghinejad, Fabrication of nanostructure Al/SiCP composite by accumulative roll bonding (ARB) process. J. Alloys Compd. 492, 231–235 (2010). https://doi.org/10.1016/j.jallcom.2009.12.026

  17. 17.

    M. Fattahi, N. Nabhani, M.R. Vaezi, E. Rahimi, Improvement of impact toughness of AWS E6010 weld metal by adding TiO2 nanoparticles to the electrode coating. Mater. Sci. Eng. A 528, 8031–8039 (2011). https://doi.org/10.1016/j.msea.2011.07.035

  18. 18.

    M. Fattahi, V. Noei Aghaei, A.R. Dabiri, S. Amirkhanlou, S. Akhavan, Y. Fattahi, Novel manufacturing process of nanoparticle/Al composite filler metals of tungsten inert gas welding by accumulative roll bonding. Mater. Sci. Eng. A 648, 47–50 (2015)

  19. 19.

    M. Fattahi, N. Nabhani, E. Rashidkhani, Y. Fattahi, S. Akhavan, N. Arabian, A new technique for the strengthening of aluminum tungsten inert gas weld metals: using carbon nanotube/aluminum composite as a filler metal. Micron. 54, 28–35 (2013). https://doi.org/10.1016/j.micron.2013.07.004

  20. 20.

    E. Ahmadi, M. Ranjkesh, E. Mansoori, M. Fattahi, R.Y. Mojallal, S. Amirkhanlou, Microstructure and mechanical properties of Al/ZrC/TiC hybrid nanocomposite filler metals of tungsten inert gas welding fabricated by accumulative roll bonding. J. Manuf. Process. 26, 173–177 (2017). https://doi.org/10.1016/j.jmapro.2017.02.012

Download references

Author information

Correspondence to S. Natarajan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramkumar, K.R., Natarajan, S. Retardation of Grain Growth in Al 3003 Nanocomposite Weldment Using ARB Filler Metal. Met. Mater. Int. (2020) doi:10.1007/s12540-019-00597-5

Download citation

Keywords

  • Al
  • TiO2
  • Nanocomposite
  • ARB, GTAW
  • Bending
  • Impact